Solveeit Logo

Question

Question: $\int_{0}^{1}x \tan^{-1}x dx =$...

01xtan1xdx=\int_{0}^{1}x \tan^{-1}x dx =

A

π4+12\frac{\pi}{4}+\frac{1}{2}

B

π412\frac{\pi}{4}-\frac{1}{2}

C

12π4\frac{1}{2}-\frac{\pi}{4}

D

π412-\frac{\pi}{4}-\frac{1}{2}

Answer

π412\frac{\pi}{4}-\frac{1}{2}

Explanation

Solution

To evaluate the definite integral 01xtan1xdx\int_{0}^{1}x \tan^{-1}x dx, we will use the method of integration by parts.

The formula for integration by parts is udv=uvvdu\int u \, dv = uv - \int v \, du.

We choose u=tan1xu = \tan^{-1}x and dv=xdxdv = x \, dx. From these choices, we find dudu and vv:

du=ddx(tan1x)dx=11+x2dxdu = \frac{d}{dx}(\tan^{-1}x) \, dx = \frac{1}{1+x^2} \, dx

v=xdx=x22v = \int x \, dx = \frac{x^2}{2}

Now, apply the integration by parts formula to the definite integral:

01xtan1xdx=[(tan1x)(x22)]0101(x22)(11+x2)dx\int_{0}^{1}x \tan^{-1}x dx = \left[ (\tan^{-1}x) \left(\frac{x^2}{2}\right) \right]_{0}^{1} - \int_{0}^{1} \left(\frac{x^2}{2}\right) \left(\frac{1}{1+x^2}\right) \, dx

Let's evaluate the first term:

[x22tan1x]01=(122tan1(1))(022tan1(0))\left[ \frac{x^2}{2} \tan^{-1}x \right]_{0}^{1} = \left( \frac{1^2}{2} \tan^{-1}(1) \right) - \left( \frac{0^2}{2} \tan^{-1}(0) \right)

Since tan1(1)=π4\tan^{-1}(1) = \frac{\pi}{4} and tan1(0)=0\tan^{-1}(0) = 0:

=(12π4)(0)=π8= \left( \frac{1}{2} \cdot \frac{\pi}{4} \right) - (0) = \frac{\pi}{8}

Now, let's evaluate the second term:

01x22(1+x2)dx=1201x21+x2dx- \int_{0}^{1} \frac{x^2}{2(1+x^2)} \, dx = -\frac{1}{2} \int_{0}^{1} \frac{x^2}{1+x^2} \, dx

To simplify the integrand x21+x2\frac{x^2}{1+x^2}, we can rewrite it as:

x21+x2=1+x211+x2=1+x21+x211+x2=111+x2\frac{x^2}{1+x^2} = \frac{1+x^2-1}{1+x^2} = \frac{1+x^2}{1+x^2} - \frac{1}{1+x^2} = 1 - \frac{1}{1+x^2}

So the integral becomes:

1201(111+x2)dx-\frac{1}{2} \int_{0}^{1} \left(1 - \frac{1}{1+x^2}\right) \, dx

=12[xtan1x]01= -\frac{1}{2} \left[ x - \tan^{-1}x \right]_{0}^{1}

Now, evaluate this expression at the limits:

=12[(1tan1(1))(0tan1(0))]= -\frac{1}{2} \left[ (1 - \tan^{-1}(1)) - (0 - \tan^{-1}(0)) \right]

=12[(1π4)(00)]= -\frac{1}{2} \left[ (1 - \frac{\pi}{4}) - (0 - 0) \right]

=12(1π4)= -\frac{1}{2} \left(1 - \frac{\pi}{4}\right)

=12+π8= -\frac{1}{2} + \frac{\pi}{8}

Finally, add the results of the first and second terms:

01xtan1xdx=π8+(12+π8)\int_{0}^{1}x \tan^{-1}x dx = \frac{\pi}{8} + \left(-\frac{1}{2} + \frac{\pi}{8}\right)

=π812+π8= \frac{\pi}{8} - \frac{1}{2} + \frac{\pi}{8}

=2π812= \frac{2\pi}{8} - \frac{1}{2}

=π412= \frac{\pi}{4} - \frac{1}{2}