Solveeit Logo

Question

Question: \(\int_{0}^{1}{\frac{d}{dx}\left\lbrack \sin^{- 1}\left( \frac{2x}{1 + x^{2}} \right) \right\rbrack ...

01ddx[sin1(2x1+x2)]dx\int_{0}^{1}{\frac{d}{dx}\left\lbrack \sin^{- 1}\left( \frac{2x}{1 + x^{2}} \right) \right\rbrack dx} is equal to

A

0

B

π\pi

C

π/2\pi ⥂ / ⥂ 2

D

π/4\pi ⥂ / ⥂ 4

Answer

π/2\pi ⥂ / ⥂ 2

Explanation

Solution

I=[sin1(2x1+x2)]01=sin1(1)sin1(0)=π2\mathbf{I =}\left\lbrack \mathbf{\sin}^{\mathbf{- 1}}\left( \frac{\mathbf{2x}}{\mathbf{1 +}\mathbf{x}^{\mathbf{2}}} \right) \right\rbrack_{\mathbf{0}}^{\mathbf{1}}\mathbf{=}\mathbf{\sin}^{\mathbf{- 1}}\mathbf{(}\mathbf{1) -}\mathbf{\sin}^{\mathbf{- 1}}\mathbf{(}\mathbf{0)}\mathbf{=}\frac{\mathbf{\pi}}{\mathbf{2}}.