Solveeit Logo

Question

Question: \(\int_{0}^{1.5}{\lbrack x^{2}\rbrack dx}\), where [.] denotes the greatest integer function, equals...

01.5[x2]dx\int_{0}^{1.5}{\lbrack x^{2}\rbrack dx}, where [.] denotes the greatest integer function, equals

A

2+22 + \sqrt{2}

B

222 - \sqrt{2}

C

1+21 + \sqrt{2}

D

21\sqrt{2} - 1

Answer

222 - \sqrt{2}

Explanation

Solution

I=01.5[x2]dx=01[x2]dx+12[x2]dx+21.5[x2]dxI = \int_{0}^{1.5}{\lbrack x^{2}\rbrack dx = \int_{0}^{1}{\lbrack x^{2}\rbrack dx +}\int_{1}^{\sqrt{2}}{\lbrack x^{2}\rbrack dx}} + \int_{\sqrt{2}}^{1.5}{\lbrack x^{2}\rbrack dx}I=0+121dx+21.52dx=21+322I = 0 + \int_{1}^{\sqrt{2}}{1dx + \int_{\sqrt{2}}^{1.5}{2dx = \sqrt{2} - 1 + 3 - 2\sqrt{2}}}I=22I = 2 - \sqrt{2}