Solveeit Logo

Question

Question: $\int_{0}^{1/2} cos^{-1}(x) dx$...

01/2cos1(x)dx\int_{0}^{1/2} cos^{-1}(x) dx

Answer

π6+132\frac{\pi}{6}+1-\frac{\sqrt{3}}{2}

Explanation

Solution

We evaluate the integral

I=01/2cos1(x)dxI=\int_{0}^{1/2}\cos^{-1}(x)dx.

Step 1: Integration by Parts

Let

u=cos1(x),dv=dxu=\cos^{-1}(x), dv=dx.

Then,

du=11x2dx,v=xdu=-\frac{1}{\sqrt{1-x^2}}dx, v=x.

Thus,

I=[xcos1(x)]01/2+01/2x1x2dxI=\left[x\cos^{-1}(x)\right]_0^{1/2}+\int_0^{1/2} \frac{x}{\sqrt{1-x^2}}dx.

Step 2: Evaluate the Boundary Term

At x=12x=\frac{1}{2}, cos112=π3\cos^{-1}\frac{1}{2}=\frac{\pi}{3} and at x=0x=0, cos1(0)=π2\cos^{-1}(0)=\frac{\pi}{2} but multiplied by 0 gives 0:

[xcos1(x)]01/2=12π30=π6\left[x\cos^{-1}(x)\right]_0^{1/2}=\frac{1}{2}\cdot\frac{\pi}{3}-0=\frac{\pi}{6}.

Step 3: Evaluate the Integral 01/2x1x2dx\displaystyle \int_0^{1/2} \frac{x}{\sqrt{1-x^2}}dx

Use the substitution:

w=1x2,dw=2xdxxdx=dw2w=1-x^2, dw=-2x\,dx\Rightarrow x\,dx=-\frac{dw}{2}.

When x=0, w=1x=0,\ w=1; when x=12, w=114=34x=\frac{1}{2},\ w=1-\frac{1}{4}=\frac{3}{4}. The integral becomes:

01/2x1x2dx=1213/4w1/2dw\int_0^{1/2}\frac{x}{\sqrt{1-x^2}}dx = -\frac{1}{2}\int_{1}^{3/4}w^{-1/2}dw.

Changing the limits order gives:

1213/4w1/2dw=123/41w1/2dw-\frac{1}{2}\int_{1}^{3/4}w^{-1/2}dw=\frac{1}{2}\int_{3/4}^{1}w^{-1/2}dw.

Now integrate:

w1/2dw=2w1/2\int w^{-1/2}dw=2w^{1/2},

thus,

12[2w1/2]w=3/41=[w1/2]3/41=134=132\frac{1}{2}\left[2w^{1/2}\right]_{w=3/4}^{1}=\left[w^{1/2}\right]_{3/4}^{1}=1-\sqrt{\frac{3}{4}}=1-\frac{\sqrt{3}}{2}.

Step 4: Combine the Results

I=π6+132I=\frac{\pi}{6}+1-\frac{\sqrt{3}}{2}.