Question
Question: $\int_{0}^{1/2} cos^{-1}(x) dx$...
∫01/2cos−1(x)dx
Answer
6π+1−23
Explanation
Solution
We evaluate the integral
I=∫01/2cos−1(x)dx.
Step 1: Integration by Parts
Let
u=cos−1(x),dv=dx.
Then,
du=−1−x21dx,v=x.
Thus,
I=[xcos−1(x)]01/2+∫01/21−x2xdx.
Step 2: Evaluate the Boundary Term
At x=21, cos−121=3π and at x=0, cos−1(0)=2π but multiplied by 0 gives 0:
[xcos−1(x)]01/2=21⋅3π−0=6π.
Step 3: Evaluate the Integral ∫01/21−x2xdx
Use the substitution:
w=1−x2,dw=−2xdx⇒xdx=−2dw.
When x=0, w=1; when x=21, w=1−41=43. The integral becomes:
∫01/21−x2xdx=−21∫13/4w−1/2dw.
Changing the limits order gives:
−21∫13/4w−1/2dw=21∫3/41w−1/2dw.
Now integrate:
∫w−1/2dw=2w1/2,
thus,
21[2w1/2]w=3/41=[w1/2]3/41=1−43=1−23.
Step 4: Combine the Results
I=6π+1−23.