Solveeit Logo

Question

Question: $\int_{-\infty}^{\infty} \frac{\cos x}{4x^2 + 1} dx$...

cosx4x2+1dx\int_{-\infty}^{\infty} \frac{\cos x}{4x^2 + 1} dx

Answer

π2e\frac{\pi}{2\sqrt{e}}

Explanation

Solution

The integral cosx4x2+1dx\int_{-\infty}^{\infty} \frac{\cos x}{4x^2 + 1} dx can be evaluated using the method of contour integration in complex analysis.

1. Define the Complex Function:
Consider the complex function f(z)=eiz4z2+1f(z) = \frac{e^{iz}}{4z^2 + 1}. We are interested in the real part of f(x)dx\int_{-\infty}^{\infty} f(x) dx, since cosx=Re(eix)\cos x = \text{Re}(e^{ix}).

2. Identify the Poles:
The poles of f(z)f(z) are the values of zz for which the denominator is zero:
4z2+1=04z^2 + 1 = 0
4z2=14z^2 = -1
z2=14z^2 = -\frac{1}{4}
z=±14=±i2z = \pm \sqrt{-\frac{1}{4}} = \pm \frac{i}{2}

3. Choose the Contour:
We use a semi-circular contour CRC_R in the upper half-plane. This contour consists of two parts:

  • The real axis from R-R to RR, denoted as LRL_R.
  • A semi-circle ΓR\Gamma_R of radius RR in the upper half-plane, centered at the origin.

4. Identify Poles Inside the Contour:
For a sufficiently large RR, only the pole z0=i2z_0 = \frac{i}{2} lies inside the contour CRC_R (since it's in the upper half-plane).

5. Calculate the Residue:
The residue of f(z)f(z) at a simple pole z0z_0 is given by Res(f,z0)=limzz0(zz0)f(z)\text{Res}(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z).
For z0=i2z_0 = \frac{i}{2}:
Res(f,i2)=limzi2(zi2)eiz4z2+1\text{Res}\left(f, \frac{i}{2}\right) = \lim_{z \to \frac{i}{2}} \left(z - \frac{i}{2}\right) \frac{e^{iz}}{4z^2 + 1}
Factor the denominator: 4z2+1=4(z2+14)=4(zi2)(z+i2)4z^2 + 1 = 4(z^2 + \frac{1}{4}) = 4\left(z - \frac{i}{2}\right)\left(z + \frac{i}{2}\right).
So,
Res(f,i2)=limzi2(zi2)eiz4(zi2)(z+i2)\text{Res}\left(f, \frac{i}{2}\right) = \lim_{z \to \frac{i}{2}} \left(z - \frac{i}{2}\right) \frac{e^{iz}}{4\left(z - \frac{i}{2}\right)\left(z + \frac{i}{2}\right)}
Res(f,i2)=limzi2eiz4(z+i2)\text{Res}\left(f, \frac{i}{2}\right) = \lim_{z \to \frac{i}{2}} \frac{e^{iz}}{4\left(z + \frac{i}{2}\right)}
Substitute z=i2z = \frac{i}{2}:
Res(f,i2)=ei(i/2)4(i2+i2)=e1/24i\text{Res}\left(f, \frac{i}{2}\right) = \frac{e^{i(i/2)}}{4\left(\frac{i}{2} + \frac{i}{2}\right)} = \frac{e^{-1/2}}{4i}

6. Apply the Residue Theorem:
According to the residue theorem, CRf(z)dz=2πiRes(f,zk)\oint_{C_R} f(z) dz = 2\pi i \sum \text{Res}(f, z_k), where the sum is over all poles inside CRC_R.
CRf(z)dz=2πi×e1/24i=2πe1/24=πe1/22\oint_{C_R} f(z) dz = 2\pi i \times \frac{e^{-1/2}}{4i} = \frac{2\pi e^{-1/2}}{4} = \frac{\pi e^{-1/2}}{2}

7. Evaluate the Integral over the Contour as RR \to \infty:
The integral over CRC_R can be written as:
CRf(z)dz=LRf(z)dz+ΓRf(z)dz\oint_{C_R} f(z) dz = \int_{L_R} f(z) dz + \int_{\Gamma_R} f(z) dz
CRf(z)dz=RReix4x2+1dx+ΓReiz4z2+1dz\oint_{C_R} f(z) dz = \int_{-R}^{R} \frac{e^{ix}}{4x^2 + 1} dx + \int_{\Gamma_R} \frac{e^{iz}}{4z^2 + 1} dz

As RR \to \infty:
The integral over LRL_R becomes the desired integral: limRRReix4x2+1dx=eix4x2+1dx\lim_{R \to \infty} \int_{-R}^{R} \frac{e^{ix}}{4x^2 + 1} dx = \int_{-\infty}^{\infty} \frac{e^{ix}}{4x^2 + 1} dx.
For the integral over ΓR\Gamma_R, we can apply Jordan's Lemma. Since P(z)=1P(z) = 1 and Q(z)=4z2+1Q(z) = 4z^2+1, and deg(Q)=2>deg(P)=0\text{deg}(Q) = 2 > \text{deg}(P) = 0, Jordan's Lemma states that limRΓReiz4z2+1dz=0\lim_{R \to \infty} \int_{\Gamma_R} \frac{e^{iz}}{4z^2 + 1} dz = 0.

8. Equate the Results:
Therefore, as RR \to \infty:
eix4x2+1dx=πe1/22\int_{-\infty}^{\infty} \frac{e^{ix}}{4x^2 + 1} dx = \frac{\pi e^{-1/2}}{2}

9. Extract the Real Part:
We know that eix=cosx+isinxe^{ix} = \cos x + i \sin x.
So, cosx+isinx4x2+1dx=πe1/22\int_{-\infty}^{\infty} \frac{\cos x + i \sin x}{4x^2 + 1} dx = \frac{\pi e^{-1/2}}{2}
cosx4x2+1dx+isinx4x2+1dx=πe1/22\int_{-\infty}^{\infty} \frac{\cos x}{4x^2 + 1} dx + i \int_{-\infty}^{\infty} \frac{\sin x}{4x^2 + 1} dx = \frac{\pi e^{-1/2}}{2}

The integrand cosx4x2+1\frac{\cos x}{4x^2 + 1} is an even function, and sinx4x2+1\frac{\sin x}{4x^2 + 1} is an odd function. The integral of an odd function over a symmetric interval [,][-\infty, \infty] is zero.
Thus, sinx4x2+1dx=0\int_{-\infty}^{\infty} \frac{\sin x}{4x^2 + 1} dx = 0.

Therefore, by comparing the real parts:
cosx4x2+1dx=Re(πe1/22)=πe1/22=π2e\int_{-\infty}^{\infty} \frac{\cos x}{4x^2 + 1} dx = \text{Re}\left(\frac{\pi e^{-1/2}}{2}\right) = \frac{\pi e^{-1/2}}{2} = \frac{\pi}{2\sqrt{e}}