Solveeit Logo

Question

Question: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{x} \cdot (1 - \cot(x) + \cot^{2}(x))dx$...

π4π4ex(1cot(x)+cot2(x))dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{x} \cdot (1 - \cot(x) + \cot^{2}(x))dx

Answer

(eπ4+eπ4)-(e^{\frac{\pi}{4}} + e^{-\frac{\pi}{4}})

Explanation

Solution

The integrand ex(1cot(x)+cot2(x))e^{x} (1 - \cot(x) + \cot^{2}(x)) simplifies to ex(csc2(x)cot(x))e^{x} (\csc^{2}(x) - \cot(x)) using 1+cot2(x)=csc2(x)1 + \cot^{2}(x) = \csc^{2}(x).

This is of the form ex(f(x)+f(x))e^x (f'(x) + f(x)) where f(x)=cot(x)f(x) = -\cot(x) and f(x)=csc2(x)f'(x) = \csc^2(x).

The integral of this form is exf(x)e^x f(x).

So, the antiderivative is excot(x)-e^x \cot(x).

Evaluating from π4-\frac{\pi}{4} to π4\frac{\pi}{4}:

[excot(x)]π4π4=(eπ4cot(π4))(eπ4cot(π4))\left[ -e^x \cot(x) \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = (-e^{\frac{\pi}{4}} \cot(\frac{\pi}{4})) - (-e^{-\frac{\pi}{4}} \cot(-\frac{\pi}{4}))

=(eπ41)(eπ4(1))= (-e^{\frac{\pi}{4}} \cdot 1) - (-e^{-\frac{\pi}{4}} \cdot (-1))

=eπ4eπ4=(eπ4+eπ4)= -e^{\frac{\pi}{4}} - e^{-\frac{\pi}{4}} = -(e^{\frac{\pi}{4}} + e^{-\frac{\pi}{4}}).