Question
Question: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{x} \cdot (1 - \cot(x) + \cot^{2}(x))dx$...
∫−4π4πex⋅(1−cot(x)+cot2(x))dx

Answer
−(e4π+e−4π)
Explanation
Solution
The integrand ex(1−cot(x)+cot2(x)) simplifies to ex(csc2(x)−cot(x)) using 1+cot2(x)=csc2(x).
This is of the form ex(f′(x)+f(x)) where f(x)=−cot(x) and f′(x)=csc2(x).
The integral of this form is exf(x).
So, the antiderivative is −excot(x).
Evaluating from −4π to 4π:
[−excot(x)]−4π4π=(−e4πcot(4π))−(−e−4πcot(−4π))
=(−e4π⋅1)−(−e−4π⋅(−1))
=−e4π−e−4π=−(e4π+e−4π).