Question
Question: $\int_{-1}^{1} \frac{\cos x}{1+e^{1/x}} dx = ?$...
∫−111+e1/xcosxdx=?

Answer
sin1
Explanation
Solution
Let
I=∫−111+ex1cosxdx.
Define
f(x)=1+e1/xcosx.
Make the substitution x→−x. Then, we have:
f(−x)=1+e1/(−x)cos(−x)=1+e−1/xcosx.
Now, add the two:
f(x)+f(−x)=1+e1/xcosx+1+e−1/xcosx=cosx(1+e1/x1+1+e−1/x1).
Notice that for any real number z, it holds that:
1+ez1+1+e−z1=1.
Thus,
f(x)+f(−x)=cosx.
Changing the order of integration (using the symmetry about 0), we get:
I=∫−11f(x)dx=∫01[f(x)+f(−x)]dx=∫01cosxdx.
Now, evaluate the integral:
∫01cosxdx=sinx01=sin1−sin0=sin1.