Solveeit Logo

Question

Question: \(\int_{- \pi/2}^{\pi/2}{\sin^{2}x\cos^{2}x(\sin x + \cos x)dx =}\)...

π/2π/2sin2xcos2x(sinx+cosx)dx=\int_{- \pi/2}^{\pi/2}{\sin^{2}x\cos^{2}x(\sin x + \cos x)dx =}

A

215\frac{2}{15}

B

415\frac{4}{15}

C

615\frac{6}{15}

D

815\frac{8}{15}

Answer

415\frac{4}{15}

Explanation

Solution

π/2π/2sin2xcos2x(sinx+cosx)dx\int_{- \pi/2}^{\pi/2}{\sin^{2}x\cos^{2}x(\sin x + \cos x)dx}

=π/2π/2sin3xcos2xdx+π/2π/2sin2xcos3xdx\int_{- \pi/2}^{\pi/2}{\sin^{3}x\cos^{2}xdx + \int_{- \pi/2}^{\pi/2}{\sin^{2}x\cos^{3}xdx}}

=0+20π/2sin2xcos3xdx=0+2×215=415= 0 + 2\int_{0}^{\pi/2}{\sin^{2}x\cos^{3}xdx} = 0 + 2 \times \frac{2}{15} = \frac{4}{15} .