Solveeit Logo

Question

Question: \(\int_{- 100\pi}^{100\pi}{(\sin^{4}x + \cos^{4}x)dx}\)is equal to -...

100π100π(sin4x+cos4x)dx\int_{- 100\pi}^{100\pi}{(\sin^{4}x + \cos^{4}x)dx}is equal to -

A

100 p

B

150 p

C

200 p

D

None

Answer

150 p

Explanation

Solution

100π100π(sin4x+cos4x)dx\int_{- 100\pi}^{100\pi}{(\sin^{4}x + \cos^{4}x)dx}= 2100π100π(sin4x+cos4x)dx\int_{- 100\pi}^{100\pi}{(\sin^{4}x + \cos^{4}x)dx}

(Q integrand is given)

= 20π2(200)(sin4x+cos4x)dx\int_{0}^{\frac{\pi}{2}(200)}{(\sin^{4}x + \cos^{4}x)dx}= 2 . 200

0π/2(sin4x+cos4x)\int_{0}^{\pi/2}{(\sin^{4}x + \cos^{4}x)}dx

[sin4x+cos4xisaperiodicfunctionofperiodπ2]\left\lbrack \because\sin^{4}x + \cos^{4}xisaperiodicfunctionofperiod\frac{\pi}{2} \right\rbrack

= 400 [0π/2sin4x+0π/2cos4(π2x)dx]\left\lbrack \int_{0}^{\pi/2}{\sin^{4}x + \int_{0}^{\pi/2}{\cos^{4}\left( \frac{\pi}{2} - x \right)}dx} \right\rbrack

= 800 0π/2sin4x\int _ { 0 } ^ { \pi / 2 } \sin ^ { 4 } x dx = 800 . 3.14.2\frac { 3.1 } { 4.2 } · π2\frac { \pi } { 2 } = 150 p.

Hence (2) is the correct answer.