Solveeit Logo

Question

Question: $\int x^4(1+x^5)^3dx$...

x4(1+x5)3dx\int x^4(1+x^5)^3dx

Answer

(1+x5)420+C\frac{(1+x^5)^4}{20}+C

Explanation

Solution

Solution:

Let

u=1+x5dudx=5x4x4dx=du5.u = 1 + x^5 \quad \Rightarrow \quad \frac{du}{dx} = 5x^4 \quad \Rightarrow \quad x^4\,dx = \frac{du}{5}.

Substitute in the integral:

x4(1+x5)3dx=(1+x5)3x4dx=u3du5=15u3du.\int x^4(1+x^5)^3\,dx = \int (1+x^5)^3 x^4\,dx = \int u^3 \frac{du}{5} = \frac{1}{5}\int u^3\,du.

Integrate:

15u44=u420+C.\frac{1}{5} \cdot \frac{u^4}{4} = \frac{u^4}{20} + C.

Substitute back:

(1+x5)420+C.\frac{(1+x^5)^4}{20} + C.

Minimal Explanation:
Substitute u=1+x5u=1+x^5 so that du=5x4dxdu=5x^4dx. Integrate to get u420+C\frac{u^4}{20}+C and revert substitution.