Question
Question: $\int x^4(1+x^5)^3dx$...
∫x4(1+x5)3dx
Answer
20(1+x5)4+C
Explanation
Solution
Solution:
Let
u=1+x5⇒dxdu=5x4⇒x4dx=5du.Substitute in the integral:
∫x4(1+x5)3dx=∫(1+x5)3x4dx=∫u35du=51∫u3du.Integrate:
51⋅4u4=20u4+C.Substitute back:
20(1+x5)4+C.Minimal Explanation:
Substitute u=1+x5 so that du=5x4dx. Integrate to get 20u4+C and revert substitution.