Solveeit Logo

Question

Question: \(\int\) (x – <sup>10</sup>C<sub>1</sub> x<sup>2</sup> + <sup>10</sup>C<sub>2</sub>x<sup>3</sup> –<s...

\int (x – 10C1 x2 + 10C2x310C3x4 .....+ 10C10x11) dx equals:

A

(1x)1111\frac{(1 - x)^{11}}{11}(1x)1010\frac{(1 - x)^{10}}{10}+ c

B

(1x)1212\frac{(1 - x)^{12}}{12}(1x)1111\frac{(1 - x)^{11}}{11}+ c

C

(1x)1010\frac{(1 - x)^{10}}{10}(1x)1111\frac{(1 - x)^{11}}{11}+ c

D

(1x)1111\frac{(1 - x)^{11}}{11}(1x)1212\frac{(1 - x)^{12}}{12}+ c

Answer

(1x)1212\frac{(1 - x)^{12}}{12}(1x)1111\frac{(1 - x)^{11}}{11}+ c

Explanation

Solution

Given expression

= x (1–10C1 x + 10C2x2 + .....+ 10C10x10)

= x(1– x)10

\ I = x(1x)10\int_{}^{}{x(1 - x)^{10}}dx

Let I –x = t – dx = dt

\ I = – (1t)t10\int_{}^{}{(1 - t)t^{10}}dt

= t1111\frac { - \mathrm { t } ^ { 11 } } { 11 } +t1212\frac{t^{12}}{12}+ c