Solveeit Logo

Question

Mathematics Question on integral

x2(ax+b)2dx\int x^{2}\left(ax + b\right)^{-2} dx is equal to

A

2a2(xbalog(ax+b))+C\frac{2}{a^{2}}\left(x -\frac{b}{a} log\left(ax+b\right)\right)+ C

B

2a2(xbalog(ax+b))x2a(ax+b)+C\frac{2}{a^{2}}\left(x -\frac{b}{a} log\left(ax+b\right)\right) -\frac{x^{2}}{a\left(ax+b\right)}+ C

C

2a2(x+balog(ax+b))+x2a(ax+b)+C\frac{2}{a^{2}}\left(x +\frac{b}{a} log\left(ax+b\right)\right) +\frac{x^{2}}{a\left(ax+b\right)}+ C

D

2a2(x+balog(ax+b))x2a(ax+b)+C\frac{2}{a^{2}}\left(x +\frac{b}{a} log\left(ax+b\right)\right) -\frac{x^{2}}{a\left(ax+b\right)}+ C

Answer

2a2(xbalog(ax+b))x2a(ax+b)+C\frac{2}{a^{2}}\left(x -\frac{b}{a} log\left(ax+b\right)\right) -\frac{x^{2}}{a\left(ax+b\right)}+ C

Explanation

Solution

I=x2(ax+b)2dxI= \int\frac{x^{2}}{\left(ax+b\right)^{2}} dx Put ax+b=tdx=1adtax +b =t \Rightarrow dx =\frac{1}{a} dt I=1a3(tb)2t2dt=1a3(1+b2t22bt)dt\therefore I =\frac{1}{a^{3}}\int\frac{\left(t-b\right)^{2}}{t^{2}} dt =\frac{1}{a^{3}} \int\left(1+\frac{b^{2}}{t^{2}}-\frac{2b}{t}\right) dt =1a3(tb2t2blogt)+C= \frac{1}{a^{3}} \left(t -\frac{b^{2}}{t}-2blogt\right) + C 1a3(ax+bb2ax+b2blog(ax+b))+C\frac{1}{a^{3}}\left(ax + b -\frac{b^{2}}{ax+b}-2b\, log\left(ax+b\right)\right) + C =2a2(xbalog(ax+b))x2a(ax+b)+C= \frac{2}{a^{2}} \left(x-\frac{b}{a} log\left(ax+b\right)\right)-\frac{x^{2}}{a\left(ax+b\right)} + C