Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

x27xdx\int{{{x}^{2}}\,{{7}^{x}}\,\,dx} is equal to

A

x27xlog7+2x7x(log7)2+27x(log7)3+c\frac{{{x}^{2}}{{7}^{x}}}{\log \,7}+2x\frac{{{7}^{x}}}{{{(\log \,7)}^{2}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+c

B

x27xlog72x7x(log7)2+27x(log7)3+c\frac{{{x}^{2}}{{7}^{x}}}{\log \,7}-2x\frac{{{7}^{x}}}{{{(\log \,7)}^{2}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+c

C

x27x2x7xlog7+27x(log7)2+c{{x}^{2}}{{7}^{x}}-2x\,\frac{7x}{\log \,7}+2\,\frac{7x}{{{(\log \,7)}^{2}}}+c

D

x27x(log7)22x7x(log7)3+27x(log7)4+c\frac{{{x}^{2}}{{7}^{x}}}{{{(\log \,7)}^{2}}}-2x\,\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{4}}}+c

Answer

x27xlog72x7x(log7)2+27x(log7)3+c\frac{{{x}^{2}}{{7}^{x}}}{\log \,7}-2x\frac{{{7}^{x}}}{{{(\log \,7)}^{2}}}+2\frac{{{7}^{x}}}{{{(\log \,7)}^{3}}}+c

Explanation

Solution

x2.7xdx\int{{{x}^{2}}}\,.\,\,{{7}^{x}}\,\,dx
=x2.7xlog72x.7xlog7dx+c=\frac{{{x}^{2}}{{.7}^{x}}}{\log \,7}-\int{\frac{2x.\,{{7}^{x}}}{log\,7}}\,dx+c
=x2.7xlog72log7[x.7xdx]+c=\frac{{{x}^{2}}{{.7}^{x}}}{\log 7}-\frac{2}{\log 7}[\int{x{{.7}^{x}}\,dx]+c}