Question
Mathematics Question on Integrals of Some Particular Functions
∫x27xdx is equal to
A
log7x27x+2x(log7)27x+2(log7)37x+c
B
log7x27x−2x(log7)27x+2(log7)37x+c
C
x27x−2xlog77x+2(log7)27x+c
D
(log7)2x27x−2x(log7)37x+2(log7)47x+c
Answer
log7x27x−2x(log7)27x+2(log7)37x+c
Explanation
Solution
∫x2.7xdx
=log7x2.7x−∫log72x.7xdx+c
=log7x2.7x−log72[∫x.7xdx]+c