Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

(x+1)(x+2)7(x+3)dx\int{(x+1){{(x+2)}^{7}}}(x+3)dx is equal to

A

(x+2)1010(x+2)88+C\frac{{{(x+2)}^{10}}}{10}-\frac{{{(x+2)}^{8}}}{8}+C

B

(x+1)22(x+2)88(x+3)22+C\frac{{{(x+1)}^{2}}}{2}-\frac{{{(x+2)}^{8}}}{8}-\frac{{{(x+3)}^{2}}}{2}+C

C

(x+2)1010+C\frac{{{(x+2)}^{10}}}{10}+C

D

(x+1)22+(x+2)88+(x+3)22+C\frac{{{(x+1)}^{2}}}{2}+\frac{{{(x+2)}^{8}}}{8}+\frac{{{(x+3)}^{2}}}{2}+C

Answer

(x+2)1010(x+2)88+C\frac{{{(x+2)}^{10}}}{10}-\frac{{{(x+2)}^{8}}}{8}+C

Explanation

Solution

Let I=(x+1)(x+2)7(x+3)dxI=\int{(x+1){{(x+2)}^{7}}(x+3)}dx
Putting x+2=tx+2=t
\Rightarrow dx=dtdx=dt
Also, x+1=t1x+1=t-1 and x+3=t+1x+3=t+1
\therefore I=(t1)t7(t+1)dtI=\int{(t-1){{t}^{7}}}(t+1)dt
=(t21)t7dt=\int{({{t}^{2}}-1)}{{t}^{7}}dt
=t9dtt7dt=\int{{{t}^{9}}}dt-\int{{{t}^{7}}}dt
=t1010t88+c=\frac{{{t}^{10}}}{10}-\frac{{{t}^{8}}}{8}+c
=(x+2)1010(x+2)88+c=\frac{{{(x+2)}^{10}}}{10}-\frac{{{(x+2)}^{8}}}{8}+c