Question
Mathematics Question on Integrals of Some Particular Functions
∫(x+1)(x+2)7(x+3)dx is equal to
A
10(x+2)10−8(x+2)8+C
B
2(x+1)2−8(x+2)8−2(x+3)2+C
C
10(x+2)10+C
D
2(x+1)2+8(x+2)8+2(x+3)2+C
Answer
10(x+2)10−8(x+2)8+C
Explanation
Solution
Let I=∫(x+1)(x+2)7(x+3)dx
Putting x+2=t
⇒ dx=dt
Also, x+1=t−1 and x+3=t+1
∴ I=∫(t−1)t7(t+1)dt
=∫(t2−1)t7dt
=∫t9dt−∫t7dt
=10t10−8t8+c
=10(x+2)10−8(x+2)8+c