Question
Mathematics Question on integral
∫tan−1xdx is equal to
A
(x+1)tan−1x−x+C
B
xtan−1x−x+C
C
x−xtan−1x+C
D
x−(x+1)tan−1x+C
Answer
(x+1)tan−1x−x+C
Explanation
Solution
We have, I=∫1⋅tan−1xdx ⇒I=tan−1x⋅(x)−∫1+x1×2x1×xdx =xtan−1x−∫(1+x)2xxdx =xtan−1x−∫((1+x)2x1+x−(1+x)2x1)dx =xtan−1x−∫2xdx+∫2x(1+x)dx =xtan−1x−x+tan−1x+C =(x+1)tan−1x−x+C