Solveeit Logo

Question

Mathematics Question on integral

tan1xdx\int tan^{-1} \sqrt{x}\,dx is equal to

A

(x+1)tan1xx+C\left(x + 1\right)tan^{-1}\sqrt{x} -\sqrt{x} + C

B

xtan1xx+Cx\,tan^{-1}\sqrt{x} -\sqrt{x} + C

C

xxtan1x+C\sqrt{x} - x\, tan^{-1}\sqrt{x} + C

D

x(x+1)tan1x+C\sqrt{x} - (x+1) tan^{-1}\sqrt{x} + C

Answer

(x+1)tan1xx+C\left(x + 1\right)tan^{-1}\sqrt{x} -\sqrt{x} + C

Explanation

Solution

We have, I=1tan1xdxI = \int 1\cdot tan^{-1}\sqrt{x}\,dx I=tan1x(x)11+x×12x×xdx\Rightarrow I= tan^{-1}\sqrt{x} \cdot\left(x\right) -\int\frac{1}{ 1+x} \times \frac{1}{2\sqrt{x}} \times x \, dx =xtan1xx(1+x)2xdx = x\,tan^{-1}\sqrt{x}-\int\frac{x}{ \left(1+x\right) \,2\,\sqrt{x}} dx =xtan1x(1+x(1+x)2x1(1+x)2x)dx = x\, tan^{-1} \sqrt{x} -\int\left(\frac{1+x}{\left(1+x\right)\, 2\,\sqrt{x}} - \frac{1}{\left(1+x\right)\,2\,\sqrt{x}}\right) dx =xtan1xdx2x+dx2x(1+x)= x\, tan^{-1} \sqrt{x}- \int\frac{dx}{2\,\sqrt{x}} + \int \frac{dx}{2\,\sqrt{x} \left(1+x\right)} =xtan1xx+tan1x+C= x\,tan^{-1}\sqrt{x} - \sqrt{x} + tan^{-1}\sqrt{x} +C =(x+1)tan1xx+C =\left(x+1\right)tan^{-1} \sqrt{x} - \sqrt{x} + C