Solveeit Logo

Question

Question: $\int \sqrt{\frac{1+2\tan x}{(\sec x + \tan x)}} dx$...

1+2tanx(secx+tanx)dx\int \sqrt{\frac{1+2\tan x}{(\sec x + \tan x)}} dx

A

secx+tanxdx\int \sqrt{\sec x + \tan x} dx

B

secxtanxdx\int \sqrt{\sec x - \tan x} dx

C

cosx+2sinx1+sinxdx\int \sqrt{\frac{\cos x + 2\sin x}{1+\sin x}} dx

D

12tanxsecxtanxdx\int \sqrt{\frac{1-2\tan x}{\sec x - \tan x}} dx

Answer

cosx+2sinx1+sinxdx\int \sqrt{\frac{\cos x + 2\sin x}{1+\sin x}} dx

Explanation

Solution

To simplify the integral 1+2tanx(secx+tanx)dx\int \sqrt{\frac{1+2\tan x}{(\sec x + \tan x)}} dx, we first rewrite the trigonometric functions in terms of sinx\sin x and cosx\cos x: tanx=sinxcosx,secx=1cosx\tan x = \frac{\sin x}{\cos x}, \quad \sec x = \frac{1}{\cos x} Substitute these into the expression inside the square root: 1+2tanxsecx+tanx=1+2sinxcosx1cosx+sinxcosx\frac{1+2\tan x}{\sec x + \tan x} = \frac{1+2\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} Multiply the numerator and the denominator by cosx\cos x: =cosx(1+2sinxcosx)cosx(1cosx+sinxcosx)=cosx+2sinx1+sinx= \frac{\cos x (1+2\frac{\sin x}{\cos x})}{\cos x (\frac{1}{\cos x} + \frac{\sin x}{\cos x})} = \frac{\cos x + 2\sin x}{1+\sin x} Therefore, the integral can be rewritten as: cosx+2sinx1+sinxdx\int \sqrt{\frac{\cos x + 2\sin x}{1+\sin x}} dx