Solveeit Logo

Question

Mathematics Question on integral

x28x+7dx\int \sqrt{x^2-8x+7}dx is equal to

A

12(x4)x28x+7+9logx4+x28x+7+C\frac{1}{2}(x-4)\sqrt{x^2-8x+7}+9\log\mid x-4+\sqrt{x^2-8x+7}\mid+C

B

12(x+4)x28x+7+9logx+4+x28x+7+C\frac{1}{2}(x+4)\sqrt{x^2-8x+7}+9\log\mid x+4+\sqrt{x^2-8x+7}\mid+C

C

12(x4)x28x+732logx4+x28x+7+C\frac{1}{2}(x-4)\sqrt{x^2-8x+7}-3\sqrt 2\log\mid x-4+\sqrt{x^2-8x+7}\mid+C

D

12(x4)x28x+792logx4+x28x+7+C\frac{1}{2}(x-4)\sqrt{x^2-8x+7}-\frac{9}{2}log\mid x-4+\sqrt{x^2-8x+7}\mid+C

Answer

12(x4)x28x+792logx4+x28x+7+C\frac{1}{2}(x-4)\sqrt{x^2-8x+7}-\frac{9}{2}log\mid x-4+\sqrt{x^2-8x+7}\mid+C

Explanation

Solution

Let I=x28x+7dxI=\int\sqrt{x^2-8x+7}dx

=(x28x+16)9dx\int \sqrt{(x^2-8x+16)-9}dx

=(x4)2(3)2dx\int\sqrt{(x-4)^2-(3)^2}dx

It is known that,x2a2dx=x2x2a2a22logx+x2a2+C\int\sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log\mid x+\sqrt{x^2-a^2}\mid+C

I=(x4)2x28x+792log(x4)+x28x+7+CI=\frac{(x-4)}{2}\sqrt{x^2-8x+7}-\frac{9}{2}\log\mid (x-4)+\sqrt{x^2-8x+7}\mid+C

Hence, the correct answer is D.