Solveeit Logo

Question

Mathematics Question on Definite Integral

52x+x2 dx=\int\sqrt{5-2x+x^2}\ dx=

A

x125+2x+x2+2log(x1)+5+2x+x2+C\frac{x-1}{2}\sqrt{5+2x+x^2}+2\log|(x-1)+\sqrt{5+2x+x^2}|+C

B

x1252x+x2+2log(x1)+x2+2x+5+C\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log|(x-1)+\sqrt{x^2+2x+5}|+C

C

x1252x+x2+2log(x1)+52x+x2+C\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log|(x-1)+\sqrt{5-2x+x^2}|+C

D

x252x+x2+4log(x1)+x22x+5+C\frac{x}{2}\sqrt{5-2x+x^2}+4\log|(x-1)+\sqrt{x^2-2x+5}|+C

Answer

x1252x+x2+2log(x1)+52x+x2+C\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log|(x-1)+\sqrt{5-2x+x^2}|+C

Explanation

Solution

The correct answer is (C) : x1252x+x2+2log(x1)+52x+x2+C\frac{x-1}{2}\sqrt{5-2x+x^2}+2\log|(x-1)+\sqrt{5-2x+x^2}|+C.