Solveeit Logo

Question

Mathematics Question on integral

1+x2dx\int \sqrt{1+x^2}dx is equal to

A

x21+x2+12logx+1+x2+C\frac{x}{2}\sqrt{1+x^2}+\frac{1}{2}\log\mid x+\sqrt{1+x^2}\mid +C

B

23(1+x2)23+C\frac{2}{3}(1+x^2)^{\frac{2}{3}}+C

C

23x(1+x2)32+C\frac{2}{3}x(1+x^2)^{\frac{3}{2}}+C

D

x221+x2+12x2logx+1+x2+C\frac{x^2}{2}\sqrt{1+x^2}+\frac{1}{2}x^2\log\mid x+\sqrt{1+x^2}\mid+C

Answer

x21+x2+12logx+1+x2+C\frac{x}{2}\sqrt{1+x^2}+\frac{1}{2}\log\mid x+\sqrt{1+x^2}\mid +C

Explanation

Solution

It is known that,a2+x2dx=x2a2+x2+a22logx+x2+a2+C\int \sqrt{a^2+x^2}dx = \frac{x}{2}\sqrt{a^2+x^2}+\frac{a^2}{2}\log\mid x+\sqrt{x^2+a^2}\mid+C

1+x2dx=x21+x2+12logx+1+x2+C\int \sqrt{1+x^2}dx=\frac{x}{2}\sqrt{1+x^2}+\frac{1}{2}\log\mid x+\sqrt{1+x^2}\mid+C

Hence, the correct answer is A.