Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

1+cosxdx\int\sqrt{1+\cos\,x}\,dx is equal to

A

22cosx2+C2\sqrt{2} \cos \frac{x}{2}+C

B

22sinx2+C2\sqrt{2} \sin \frac{x}{2}+C

C

2cosx2+C\sqrt{2} \cos \frac{x}{2}+C

D

2sinx2+C\sqrt{2} \sin \frac{x}{2}+C

Answer

22sinx2+C2\sqrt{2} \sin \frac{x}{2}+C

Explanation

Solution

1+cosxdx=2cos(x2)dx\int \sqrt{1+\cos x} \,d x=\sqrt{2} \int \cos \left(\frac{x}{2}\right) d x
=22sin(x2)+c=2 \sqrt{2} \sin \left(\frac{x}{2}\right)+c
[1+cosx=2cos2x2]\left[\because 1+\cos x=2 \cos ^{2} \frac{x}{2}\right]