Solveeit Logo

Question

Question: \(\int\) sin<sup>4</sup>x dx, = ax + b sin 2x + c sin 4x + d then 8a + 4b + 32 c =...

\int sin4x dx, = ax + b sin 2x + c sin 4x + d then 8a + 4b + 32 c =

A

0

B

1

C

2

D

None of these

Answer

None of these

Explanation

Solution

sin4xdx\int \sin ^ { 4 } x d x = (1cos2x2)2dx\int \left( \frac { 1 - \cos 2 x } { 2 } \right) ^ { 2 } \mathrm { dx }

= 14(1+cos22x2cos2x)dx\frac { 1 } { 4 } \int \left( 1 + \cos ^ { 2 } 2 x - 2 \cos 2 x \right) d x

=

= x4sin2x4+x8+sin4x32+C\frac { x } { 4 } - \frac { \sin 2 x } { 4 } + \frac { x } { 8 } + \frac { \sin 4 x } { 32 } + C= 3x8sin2x4+sin4x32+C\frac { 3 x } { 8 } - \frac { \sin 2 x } { 4 } + \frac { \sin 4 x } { 32 } + C