Solveeit Logo

Question

Question: $\int \sin^3 x.\cos^6 x \, dx =$...

sin3x.cos6xdx=\int \sin^3 x.\cos^6 x \, dx =

A

cos7x7cos9x9+c\frac{\cos^7 x}{7} - \frac{\cos^9 x}{9} + c

B

sin9x9sin7x7+c\frac{\sin^9 x}{9} - \frac{\sin^7 x}{7} + c

C

sin7x7sin9x9+c\frac{\sin^7 x}{7} - \frac{\sin^9 x}{9} + c

D

cos9x9cos7x7+c\frac{\cos^9 x}{9} - \frac{\cos^7 x}{7} + c

Answer

cos9x9cos7x7+c\frac{\cos^9 x}{9} - \frac{\cos^7 x}{7} + c

Explanation

Solution

The integral to be solved is sin3x.cos6xdx\int \sin^3 x.\cos^6 x \, dx.

We can rewrite the integrand as: sin2xcos6xsinxdx\int \sin^2 x \cdot \cos^6 x \cdot \sin x \, dx

Using the identity sin2x=1cos2x\sin^2 x = 1 - \cos^2 x, we substitute it into the integral: (1cos2x)cos6xsinxdx\int (1 - \cos^2 x) \cdot \cos^6 x \cdot \sin x \, dx

Now, let's use the substitution method. Let u=cosxu = \cos x. Then, differentiate both sides with respect to xx: du=sinxdxdu = -\sin x \, dx This implies sinxdx=du\sin x \, dx = -du.

Substitute u=cosxu = \cos x and sinxdx=du\sin x \, dx = -du into the integral: (1u2)u6(du)\int (1 - u^2) \cdot u^6 \cdot (-du) =(u6u2u6)du= -\int (u^6 - u^2 \cdot u^6) \, du =(u6u8)du= -\int (u^6 - u^8) \, du

Distribute the negative sign: =(u8u6)du= \int (u^8 - u^6) \, du

Now, integrate term by term using the power rule for integration, xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C: =u8+18+1u6+16+1+C= \frac{u^{8+1}}{8+1} - \frac{u^{6+1}}{6+1} + C =u99u77+C= \frac{u^9}{9} - \frac{u^7}{7} + C

Finally, substitute back u=cosxu = \cos x: =cos9x9cos7x7+C= \frac{\cos^9 x}{9} - \frac{\cos^7 x}{7} + C

Comparing this result with the given options, it matches the fourth option.