Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

(sin6x+cos6x+3sin2xcos2x)dx\int{({{\sin }^{6}}x+{{\cos }^{6}}x+3{{\sin }^{2}}x \,{{\cos }^{2}}x)}dx is equal to

A

x+cx+c

B

32sin2x+c\frac{3}{2}\sin 2x+c

C

32cos2x+c-\frac{3}{2}\cos 2x+c

D

13sin3xcos3x+c\frac{1}{3}\sin 3x-\cos 3x+c

Answer

x+cx+c

Explanation

Solution

Let I=(sin6x+cos6x+3sin2xcos2x)dxI=\int{({{\sin }^{6}}x+{{\cos }^{6}}x+3{{\sin }^{2}}x{{\cos }^{2}}x)}dx
=\int{\\{{{({{\sin }^{2}}x)}^{3}}+{{({{\cos }^{2}}x)}^{3}}} +3{{\sin }^{2}}x{{\cos }^{2}}x\\}dx\\}
=[(sin2x+cos2x)(sin4x+cos4x sin2xcos2x)+3sin2xcos2x ]dx=\int{\left[ \begin{aligned} & ({{\sin }^{2}}x+{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x \\\ & -{{\sin }^{2}}x{{\cos }^{2}}x)+3{{\sin }^{2}}x{{\cos }^{2}}x \\\ \end{aligned} \right]}dx
=[(sin2x+cos2x)23sin2xcos2x +3sin2xcos2x ]dx=\int{\left[ \begin{aligned} & {{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-3{{\sin }^{2}}x{{\cos }^{2}}x \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+3{{\sin }^{2}}x{{\cos }^{2}}x \\\ \end{aligned} \right]}dx
=1dx=\int{1\,dx}
=x+c= x+c