Question
Mathematics Question on Integrals of Some Particular Functions
∫(sin6x+cos6x+3sin2xcos2x)dx is equal to
A
x+c
B
23sin2x+c
C
−23cos2x+c
D
31sin3x−cos3x+c
Answer
x+c
Explanation
Solution
Let I=∫(sin6x+cos6x+3sin2xcos2x)dx
=\int{\\{{{({{\sin }^{2}}x)}^{3}}+{{({{\cos }^{2}}x)}^{3}}} +3{{\sin }^{2}}x{{\cos }^{2}}x\\}dx\\}
=∫ (sin2x+cos2x)(sin4x+cos4x−sin2xcos2x)+3sin2xcos2xdx
=∫ (sin2x+cos2x)2−3sin2xcos2x+3sin2xcos2xdx
=∫1dx
=x+c