Question
Question: $\int sin 2x cos^7x dx$...
∫sin2xcos7xdx

Answer
−92cos9x+C
Explanation
Solution
To solve the integral ∫sin2xcos7xdx, we will use trigonometric identities and substitution.
-
Use the double angle identity for sine:
We know that sin2x=2sinxcosx. Substitute this into the integral:
∫sin2xcos7xdx=∫(2sinxcosx)cos7xdx =∫2sinxcos8xdx -
Use substitution:
Let u=cosx. Then, differentiate u with respect to x:
dxdu=−sinxSo, du=−sinxdx, which implies sinxdx=−du.
-
Substitute u and du into the integral:
∫2cos8x(sinxdx)=∫2u8(−du) =−2∫u8du -
Integrate with respect to u:
Using the power rule for integration, ∫undu=n+1un+1+C:
−2∫u8du=−2(8+1u8+1)+C =−2(9u9)+C =−92u9+C -
Substitute back u=cosx:
−92cos9x+C
The final answer is −92cos9x+C.