Solveeit Logo

Question

Question: $\int sin 2x cos^7x dx$...

sin2xcos7xdx\int sin 2x cos^7x dx

Answer

29cos9x+C-\frac{2}{9} \cos^9x + C

Explanation

Solution

To solve the integral sin2xcos7xdx\int \sin 2x \cos^7x \, dx, we will use trigonometric identities and substitution.

  1. Use the double angle identity for sine:

    We know that sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x. Substitute this into the integral:

    sin2xcos7xdx=(2sinxcosx)cos7xdx\int \sin 2x \cos^7x \, dx = \int (2 \sin x \cos x) \cos^7x \, dx =2sinxcos8xdx= \int 2 \sin x \cos^8x \, dx
  2. Use substitution:

    Let u=cosxu = \cos x. Then, differentiate uu with respect to xx:

    dudx=sinx\frac{du}{dx} = -\sin x

    So, du=sinxdxdu = -\sin x \, dx, which implies sinxdx=du\sin x \, dx = -du.

  3. Substitute uu and dudu into the integral:

    2cos8x(sinxdx)=2u8(du)\int 2 \cos^8x (\sin x \, dx) = \int 2 u^8 (-du) =2u8du= -2 \int u^8 \, du
  4. Integrate with respect to uu:

    Using the power rule for integration, undu=un+1n+1+C\int u^n \, du = \frac{u^{n+1}}{n+1} + C:

    2u8du=2(u8+18+1)+C-2 \int u^8 \, du = -2 \left( \frac{u^{8+1}}{8+1} \right) + C =2(u99)+C= -2 \left( \frac{u^9}{9} \right) + C =29u9+C= -\frac{2}{9} u^9 + C
  5. Substitute back u=cosxu = \cos x:

    29cos9x+C-\frac{2}{9} \cos^9x + C

The final answer is 29cos9x+C-\frac{2}{9} \cos^9x + C.