Solveeit Logo

Question

Mathematics Question on integral

sin1xdx\int sin^{-1} x dx is equal to

A

cos1x+Ccos^{- 1 }x + C

B

xsin1x+1x2+C xsin^{-1} x+\sqrt{1-x^{2} }+C

C

11x2+C \frac{1}{\sqrt{1-x^{2}}}+C

D

xsin1x1x2+C x sin^{-1}x-\sqrt{1-x^{2}}+C

Answer

xsin1x+1x2+C xsin^{-1} x+\sqrt{1-x^{2} }+C

Explanation

Solution

Let I=sin1x1dx=(sin1x)x11x2xdx+CI=\int sin^{-1}x \cdot 1 dx = \left(sin^{-1}x\right)x -\int\frac{1}{\sqrt{1-x^{2}}}\cdot x dx +C' Put1x2=t22xdx=2tdtPut 1-x^{2} =t^{2 }\Rightarrow -2x dx = 2t dt xsin1x(tdt)t+C=xsin1x+1x2+Cx sin^{-1}x - \int\frac{\left(-t dt \right)}{t}+ C' = x sin^{-1} x + \sqrt{1-x^{2}}+C