Question
Question: $\int sec^3x dx$...
∫sec3xdx

21(secxtanx+ln∣secx+tanx∣)+C
Solution
The integral ∫sec3xdx is a standard integral solved using integration by parts.
Let I=∫sec3xdx. We can rewrite sec3x as secx⋅sec2x. Apply integration by parts, ∫udv=uv−∫vdu. Let u=secx and dv=sec2xdx. Then, du=dxd(secx)dx=secxtanxdx. And, v=∫sec2xdx=tanx.
Substitute these into the integration by parts formula: I=secxtanx−∫tanx(secxtanx)dx I=secxtanx−∫secxtan2xdx
Now, use the trigonometric identity tan2x=sec2x−1: I=secxtanx−∫secx(sec2x−1)dx I=secxtanx−∫(sec3x−secx)dx I=secxtanx−∫sec3xdx+∫secxdx
Notice that the integral ∫sec3xdx is I. Substitute I back into the equation: I=secxtanx−I+∫secxdx
We know the standard integral of secx: ∫secxdx=ln∣secx+tanx∣+C1
Substitute this back into the equation: I=secxtanx−I+ln∣secx+tanx∣
Now, solve for I: 2I=secxtanx+ln∣secx+tanx∣ I=21(secxtanx+ln∣secx+tanx∣)+C (where C=C1/2 is the constant of integration)