Solveeit Logo

Question

Question: $\int sec^3x dx$...

sec3xdx\int sec^3x dx

Answer

12(secxtanx+lnsecx+tanx)+C\frac{1}{2}(\sec x \tan x + \ln|\sec x + \tan x|) + C

Explanation

Solution

The integral sec3xdx\int \sec^3 x \, dx is a standard integral solved using integration by parts.

Let I=sec3xdxI = \int \sec^3 x \, dx. We can rewrite sec3x\sec^3 x as secxsec2x\sec x \cdot \sec^2 x. Apply integration by parts, udv=uvvdu\int u \, dv = uv - \int v \, du. Let u=secxu = \sec x and dv=sec2xdxdv = \sec^2 x \, dx. Then, du=ddx(secx)dx=secxtanxdxdu = \frac{d}{dx}(\sec x) \, dx = \sec x \tan x \, dx. And, v=sec2xdx=tanxv = \int \sec^2 x \, dx = \tan x.

Substitute these into the integration by parts formula: I=secxtanxtanx(secxtanx)dxI = \sec x \tan x - \int \tan x (\sec x \tan x) \, dx I=secxtanxsecxtan2xdxI = \sec x \tan x - \int \sec x \tan^2 x \, dx

Now, use the trigonometric identity tan2x=sec2x1\tan^2 x = \sec^2 x - 1: I=secxtanxsecx(sec2x1)dxI = \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx I=secxtanx(sec3xsecx)dxI = \sec x \tan x - \int (\sec^3 x - \sec x) \, dx I=secxtanxsec3xdx+secxdxI = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx

Notice that the integral sec3xdx\int \sec^3 x \, dx is II. Substitute II back into the equation: I=secxtanxI+secxdxI = \sec x \tan x - I + \int \sec x \, dx

We know the standard integral of secx\sec x: secxdx=lnsecx+tanx+C1\int \sec x \, dx = \ln|\sec x + \tan x| + C_1

Substitute this back into the equation: I=secxtanxI+lnsecx+tanxI = \sec x \tan x - I + \ln|\sec x + \tan x|

Now, solve for II: 2I=secxtanx+lnsecx+tanx2I = \sec x \tan x + \ln|\sec x + \tan x| I=12(secxtanx+lnsecx+tanx)+CI = \frac{1}{2} (\sec x \tan x + \ln|\sec x + \tan x|) + C (where C=C1/2C = C_1/2 is the constant of integration)