Solveeit Logo

Question

Question: $\int \sec^2(2-3x)dx$...

sec2(23x)dx\int \sec^2(2-3x)dx

Answer

13tan(23x)+C-\frac{1}{3} \tan(2-3x) + C

Explanation

Solution

Let u=23xu = 2-3x, so du=3dxdu = -3dx, which means dx=13dudx = -\frac{1}{3}du. The integral becomes 13sec2(u)du=13tan(u)+C=13tan(23x)+C-\frac{1}{3} \int \sec^2(u) du = -\frac{1}{3} \tan(u) + C = -\frac{1}{3} \tan(2-3x) + C