Solveeit Logo

Question

Mathematics Question on integral

π/3π/3xsinxcos2xdx\int _{\pi/3}^{\pi/3} \frac {x \sin x}{\cos^2x} dx is equal to

A

π3logtan3π2\frac{\pi}{3}-\log\, \tan \frac{3\pi}{2}

B

2[2π3logtan5π12]2[\frac {2\pi} {3}-\log\, \tan \frac {5\pi} {12}]

C

3[π2logsinπ12]3[\frac{\pi}{2}\log\, \sin \frac{\pi}{12}]

D

none of these

Answer

2[2π3logtan5π12]2[\frac {2\pi} {3}-\log\, \tan \frac {5\pi} {12}]

Explanation

Solution

π/3π/3xsinxcos2xdx=2\int\limits_{-\pi /3}^{\pi /3} \frac{x\, sin\,x}{cos^{2}\,x} dx=2 0π/3x(secxtanx)dx\int\limits_{0}^{\pi /3} x \left(sec\,x \, tan\,x\right)dx =2[xsecx0π/30π/3secxdx]=2\left[\left|x\cdot sec x\right|_{0}^{\pi /3}-\int_{0}^{\pi /3} sec\,x\,dx\right] =2[π3(2)log(secx+tanx)0π/3]=2\left[\frac{\pi}{3}\cdot\left(2\right)-\left|log\left(sec\,x+tan\,x\right)\right|_{0}^{\pi /3}\right] =2[2π3log(2+3)+0]=2\left[\frac{2\pi}{3}-log\left(2+\sqrt{3}\right)+0\right] =2[2π3logtan5π12]=2\left[\frac{2\pi}{3}-log\, tan \frac{5\pi}{12}\right] [tan5π12=tan75=2+3]\left[\because tan \frac{5\pi}{12}=tan\,75^{\circ}=2+\sqrt{3}\right]