Solveeit Logo

Question

Question: \int \operatorname{arccot}\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x...

\int \operatorname{arccot}\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x

Answer

x \arctan\left(\sqrt{1-x^{2}}\right) - \arcsin x + \sqrt{2} \arctan\left(\frac{x}{\sqrt{2(1-x^2)}}\right) + C

Explanation

Solution

First, simplify the integrand using the identity arccot(y)=arctan(1/y)\operatorname{arccot}(y) = \arctan(1/y) for y>0y>0: arccot(11x2)=arctan(1x2)\operatorname{arccot}\left(\frac{1}{\sqrt{1-x^{2}}}\right) = \arctan\left(\sqrt{1-x^{2}}\right) So the integral becomes arctan(1x2)dx\int \arctan\left(\sqrt{1-x^{2}}\right) d x.

Use integration by parts with u=arctan(1x2)u = \arctan\left(\sqrt{1-x^{2}}\right) and dv=dxdv = dx. Then v=xv = x and du=x(2x2)1x2dxdu = \frac{-x}{(2-x^2)\sqrt{1-x^2}} dx. arctan(1x2)dx=xarctan(1x2)xx(2x2)1x2dx\int \arctan\left(\sqrt{1-x^{2}}\right) d x = x \arctan\left(\sqrt{1-x^{2}}\right) - \int x \cdot \frac{-x}{(2-x^2)\sqrt{1-x^2}} dx =xarctan(1x2)+x2(2x2)1x2dx= x \arctan\left(\sqrt{1-x^{2}}\right) + \int \frac{x^2}{(2-x^2)\sqrt{1-x^2}} dx Let I1=x2(2x2)1x2dxI_1 = \int \frac{x^2}{(2-x^2)\sqrt{1-x^2}} dx. Substitute x=sinθx = \sin\theta, dx=cosθdθdx = \cos\theta d\theta. I1=sin2θ1+cos2θdθ=θ+2arctan(tanθ2)I_1 = \int \frac{\sin^2\theta}{1+\cos^2\theta} d\theta = -\theta + \sqrt{2} \arctan\left(\frac{\tan\theta}{\sqrt{2}}\right) Substituting back x=sinθx = \sin\theta: I1=arcsinx+2arctan(x2(1x2))I_1 = -\arcsin x + \sqrt{2} \arctan\left(\frac{x}{\sqrt{2(1-x^2)}}\right) Combining the terms: arctan(1x2)dx=xarctan(1x2)arcsinx+2arctan(x2(1x2))+C\int \arctan\left(\sqrt{1-x^{2}}\right) d x = x \arctan\left(\sqrt{1-x^{2}}\right) - \arcsin x + \sqrt{2} \arctan\left(\frac{x}{\sqrt{2(1-x^2)}}\right) + C