Question
Question: \int \operatorname{arccot}\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x...
\int \operatorname{arccot}\left(\frac{1}{\sqrt{1-x^{2}}}\right) d x

Answer
x \arctan\left(\sqrt{1-x^{2}}\right) - \arcsin x + \sqrt{2} \arctan\left(\frac{x}{\sqrt{2(1-x^2)}}\right) + C
Explanation
Solution
First, simplify the integrand using the identity arccot(y)=arctan(1/y) for y>0: arccot(1−x21)=arctan(1−x2) So the integral becomes ∫arctan(1−x2)dx.
Use integration by parts with u=arctan(1−x2) and dv=dx. Then v=x and du=(2−x2)1−x2−xdx. ∫arctan(1−x2)dx=xarctan(1−x2)−∫x⋅(2−x2)1−x2−xdx =xarctan(1−x2)+∫(2−x2)1−x2x2dx Let I1=∫(2−x2)1−x2x2dx. Substitute x=sinθ, dx=cosθdθ. I1=∫1+cos2θsin2θdθ=−θ+2arctan(2tanθ) Substituting back x=sinθ: I1=−arcsinx+2arctan(2(1−x2)x) Combining the terms: ∫arctan(1−x2)dx=xarctan(1−x2)−arcsinx+2arctan(2(1−x2)x)+C
