Solveeit Logo

Question

Mathematics Question on integral

log12log2sin(ex1ex+1)dx\int_{\log\frac{1} {2}} ^{\log2} \, \sin (\frac {e^x-1} {e^x+1})dx is equal to

A

cos13\cos \frac {1} {3}

B

0

C

2cos22 \cos 2

D

none of these

Answer

0

Explanation

Solution

Let f(x)=sin(ex1ex+1)f \left(x\right)=sin \left(\frac{e^{x}-1}{e^{x}+1}\right) f(x)=sin(ex1ex+1)=sin(1ex11ex+1)\therefore f\left(-x\right)=sin\left(\frac{e^{-x}-1}{e^{-x}+1}\right)=sin \left(\frac{\frac{1}{e^{x}}-1}{\frac{1}{e^{x}}+1}\right) =sin(1ex1+ex)=sin(ex1ex+1)=f(x)=sin \left(\frac{1-e^{x}}{1+e^{x}}\right)=-sin \left(\frac{e^{x}-1}{e^{x}+1}\right)=-f \left(x\right) f(x)\therefore f \left(x\right) is an odd function. \therefore given integral =log2log2sin(ex1ex+1)dx=0=\int_{-log\,2}^{log\,2} sin \left(\frac{e^{x}-1}{e^{x}+1}\right)dx=0