Solveeit Logo

Question

Mathematics Question on integral

π/4π/4exsec2xdxe2x1\int\limits_{-\pi/4}^{\pi/4}\frac{e^x\,\sec^2x\,dx}{e^{2x}-1} is equal to

A

0

B

2

C

e

D

none of these.

Answer

0

Explanation

Solution

Let f(x)=exsec2xe2x1f\left(x\right) =\frac{e^{x} sec^{2}\,x}{e^{2x}-1} f(x)=exsec2(x)e2x1=1ex1e2x1sec2x\therefore f \left(-x\right)=\frac{e^{-x} sec^{2}\left(-x\right)}{e^{-2x}-1}=\frac{\frac{1}{e^{x}}}{\frac{1}{e^{2x}}-1}sec^{2}\, x =e2xex(1e2x)sec2x=exe2x1sec2x=f(x)=\frac{e^{2} x}{e^{x}\left(1-e^{2x}\right)} sec^{2}\,x=-\frac{e^{x}}{e^{2x}-1}sec^{2}\, x=f \left(x\right) \therefore f i s an odd function π4π4exsec2xe2x1dx=0\therefore \int\limits_{-\pi 4}^{\pi 4}\frac{e^{x}sec^{2}\,x}{e^{2x}-1} dx=0