Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

0π/22sinx2sinx+2cosxdx\int\limits^{\pi/2}_{0} \frac{2^{\sin x}}{2^{\sin x} + 2^{\cos x}} dx equals

A

2

B

π\pi

C

π/4\pi / 4

D

π/2\pi / 2

Answer

π/4\pi / 4

Explanation

Solution

I=0π/22sinx2sinx+2cosxdxI = \int\limits^{\pi/2}_{0} \frac{2^{\sin x}}{2^{\sin x} + 2^{\cos x}} dx
I=0π/22sin(π/2x)2sin(π/2x)+2cos(π/2x)dxI = \int\limits^{\pi/2}_{0} \frac{2^{\sin\left(\pi/2-x\right)}}{2^{\sin\left(\pi/2-x\right)} + 2^{\cos\left(\pi/2-x\right)}}dx
=2cosx2cosx+2sinxdx= \int \frac{2^{\cos x}}{2^{\cos x} + 2^{\sin x}} dx
21=0π/2dx=π2\Rightarrow 21 = \int\limits^{\pi/2}_{0} dx = \frac{\pi}{2}
1=π4\Rightarrow 1 = \frac{\pi}{4}