Solveeit Logo

Question

Mathematics Question on integral

0π[cotx]dx,[??\int\limits^{\pi}_{{0}}[cot\,x]dx, [?? denotes the greatest integer function, is equal to

A

π2\frac{\pi}{2}

B

11

C

1-1

D

π2-\frac{\pi}{2}

Answer

π2-\frac{\pi}{2}

Explanation

Solution

Let I=0π[cotx]dx...(1)I=\int\limits^{\pi}_{{0}}[cot\,x]dx \,...(1) =0π[cot(πx)]dx0πcotx]dx...(1)=\int\limits^{\pi}_{{0}}[cot(\pi-x)]dx\int\limits^{\pi}_{{0}}--cot\,x]dx \,...(1) Adding (1) and (2) 2I=0π[cotx]dx+0π[cotx]dx=0π(1)dx2I=\int\limits^{\pi}_{{0}}[cot\,x]dx+\int\limits^{\pi}_{{0}}[cot\,x]dx=\int\limits^{\pi}_{{0}}(-1)dx\,\,\, [[x]+[x]=1ifxZ=0ifxZ]\left[\because\left[x\right]+\left[-x\right]=-1 \,if\,x\notin Z=0\,if\,x\in Z\right] =[x]0π=π=\left[-x\right]^{\pi}_{0}=-\pi I=π2\therefore I=-\frac{\pi}{2}