Solveeit Logo

Question

Mathematics Question on integral

sec2x(secx+tanx)9/2dx\int \limits \frac {sec^2x}{(secx+tan \, x)^{9/2}}dx equals to (for some arbitrary constant K)

A

\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}- \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K

B

\frac {1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}- \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K

C

\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K

D

\frac {1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K

Answer

\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K

Explanation

Solution

PLAN Integration by Substitution \hspace5mm i.e. \, \, \, \, I= \int \limits f \\{g(x) \\}.. g^1(x)dx \hspace5mm put \, \, \, \, g(x)=t \Rightarrow g^1(x)dx=dt \hspace5mm \therefore \, \, \, \, I= \int \limits f(t)dt Description of Situation Generally, students gets confused after substitution, i.e. secx+tanx=t. Now, for secx, we should use \hspace20mm sec^2x-tan^2x=1 (secxtanx)(secx+tanx)=1\Rightarrow \, \, \, \, \, \, (secx-tanx)(secx+tanx)=1 secxtanx=1t\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, secx-tanx= \frac {1}{t} Here, \hspace15mm I= \int \limits \frac {sec^2dx}{(secx+tanx)^{9/2}} Put secx+tanx=t (secxtanx+sec2x)dx=dt\Rightarrow (secxtanx+sec^2x)dx=dt \Rightarrow \hspace10mm secx.tdx=dt \Rightarrow \hspace10mm secxdx=\frac {dt}{t} \therefore \hspace8mm secx-tanx= \frac {1}{t} \Rightarrow secx= \frac {1}{2} \bigg (t+ \frac {1}{t} \bigg ) \therefore \hspace12mm I=\int \limits \frac {secx.secxdx}{(secx+tanx)^ {9/2}} I=12(t+1t).dttt9/2=12(1t9/2+1t13/2)dt\Rightarrow I= \int \limits \frac {\frac {1}{2}\bigg (t+\frac {1}{t}\bigg ).\frac {dt}{t}}{t^{9/2}}= \frac {1}{2}\int \limits \bigg (\frac {1}{t^ {9/2}}+ \frac {1}{t^ {13/2}}\bigg ) dt \hspace5mm =- \frac {1}{2} \bigg \\{\frac {2}{7t^{7/2}}+ \frac {2}{11t ^{11/2}}\bigg \\}+K =[17(secx+tanx)7/2+111(secx+tanx)11/2]+K= -\bigg [ \frac {1}{7(secx+tanx)^{7/2}} + \frac {1}{11(secx+tanx)^{11/2}}\bigg ]+K = \frac {-1}{(secx+tanx)^{11/2}}\bigg \\{\frac {1}{11}+ \frac {1}{7}(secx+tan x)^2 \bigg \\}+K