Question
Mathematics Question on integral
∫(secx+tanx)9/2sec2xdx equals to (for some arbitrary constant K)
\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}- \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K
\frac {1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}- \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K
\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K
\frac {1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K
\frac {-1}{(secx+tan \, x)^{11/2}} \bigg \\{ \frac {1}{11}+ \frac {1}{7}(secx+tan \, x)^2 \bigg \\}+K
Solution
PLAN Integration by Substitution \hspace5mm i.e. \, \, \, \, I= \int \limits f \\{g(x) \\}.. g^1(x)dx \hspace5mm put \, \, \, \, g(x)=t \Rightarrow g^1(x)dx=dt \hspace5mm \therefore \, \, \, \, I= \int \limits f(t)dt Description of Situation Generally, students gets confused after substitution, i.e. secx+tanx=t. Now, for secx, we should use \hspace20mm sec^2x-tan^2x=1 ⇒(secx−tanx)(secx+tanx)=1 ⇒secx−tanx=t1 Here, \hspace15mm I= \int \limits \frac {sec^2dx}{(secx+tanx)^{9/2}} Put secx+tanx=t ⇒(secxtanx+sec2x)dx=dt \Rightarrow \hspace10mm secx.tdx=dt \Rightarrow \hspace10mm secxdx=\frac {dt}{t} \therefore \hspace8mm secx-tanx= \frac {1}{t} \Rightarrow secx= \frac {1}{2} \bigg (t+ \frac {1}{t} \bigg ) \therefore \hspace12mm I=\int \limits \frac {secx.secxdx}{(secx+tanx)^ {9/2}} ⇒I=∫t9/221(t+t1).tdt=21∫(t9/21+t13/21)dt \hspace5mm =- \frac {1}{2} \bigg \\{\frac {2}{7t^{7/2}}+ \frac {2}{11t ^{11/2}}\bigg \\}+K =−[7(secx+tanx)7/21+11(secx+tanx)11/21]+K = \frac {-1}{(secx+tanx)^{11/2}}\bigg \\{\frac {1}{11}+ \frac {1}{7}(secx+tan x)^2 \bigg \\}+K