Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

20162017xx+4033xdx\int \limits^{2017}_{2016} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4033 - x}} dx is equal to

A

44565

B

44622

C

42767

D

44563

Answer

44563

Explanation

Solution

Let I=20162017xx+4033xdx...(i)I=\int\limits_{2016}^{2017} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4033-x}} d x\,\,\,...(i)
I=201620174033x4033X+4033(4033x)dx\therefore I=\int\limits_{2016}^{2017} \frac{\sqrt{4033-x}}{\sqrt{4033-X}+\sqrt{4033-(4033-x)}} d x
[abf(x)dx=baf(a+bx)dx]\left[\because \int\limits_{a}^{b} f(x) d x=\int_{b}^{a} f(a+b-x) d x\right]
I=201620174033X4033X+xdx\Rightarrow I=\int\limits_{2016}^{2017} \frac{\sqrt{4033-X}}{\sqrt{4033-X}+\sqrt{x}} d x \ldots (ii)
On adding Eqs. (i) and (ii), we get
2I=20162017dx2 I=\int\limits_{2016}^{2017} d x
2I=[x]20162017\Rightarrow 2\, I=[x]_{2016}^{2017}
2I=1\Rightarrow 2 \,I=1
I=12\Rightarrow I=\frac{1}{2}