Solveeit Logo

Question

Mathematics Question on integral

2a2+af(x)dx\int\limits_{2-a}^{2+a} f\left(x\right) dx is equal to (where f(2a)=f(2+a)aRf\left(2 - a\right)=f\left(2 + a\right) \forall a\in R)

A

222+af(x)dx 2 \int\limits_{2}^{2+a} f\left(x\right) dx

B

20af(x)dx 2 \int\limits_{0}^{a} f\left(x\right) dx

C

202f(x)dx 2 \int\limits_{0}^{2} f\left(x\right) dx

D

None of these

Answer

222+af(x)dx 2 \int\limits_{2}^{2+a} f\left(x\right) dx

Explanation

Solution

f(2a)=f(2+a)\because f\left(2 - a \right)=f\left(2 + a\right) \therefore Function is symmetrical about the line x=2x = 2 Then 2a2+af(x)dx=222+af(x)dx \int\limits_{2-a}^{2+a} f\left(x\right) dx = 2 \int\limits_{2}^{2+a} f\left(x\right) dx