Solveeit Logo

Question

Mathematics Question on integral

1elogxdx=\int\limits_1^e \log \, x \, dx =

A

11

B

e1e - 1

C

e+1e + 1

D

00

Answer

11

Explanation

Solution

We have, 1elogxdx=\int\limits_1^e \log \, x \, dx =
=[logx1dx]1e1e(ddxlogx1dx)dx=\left[\log x \int\limits 1 dx \right]^{e}_{1} - \int\limits_1^e \left( \frac{d}{dx} \log \, x \, \int\limits 1 \, dx \right) dx
=[logx.x]1e1e1xxdx=\left[\log\, x . x \right]^{e}_{1} - \int\limits_1^e \frac{1}{x} x \, dx
=[eloge1log(1)]1e1dx= [e \, \log \, e - 1 \, \log (1) ] - \int\limits_1^e 1 \, dx
=e[x]1e=e[e1]=1= e - [x]^e_1 =e - [e - 1] = 1