Question
Mathematics Question on integral
1∫elogxdx=
A
1
B
e−1
C
e+1
D
0
Answer
1
Explanation
Solution
We have, 1∫elogxdx=
=[logx∫1dx]1e−1∫e(dxdlogx∫1dx)dx
=[logx.x]1e−1∫ex1xdx
=[eloge−1log(1)]−1∫e1dx
=e−[x]1e=e−[e−1]=1
1∫elogxdx=
1
e−1
e+1
0
1
We have, 1∫elogxdx=
=[logx∫1dx]1e−1∫e(dxdlogx∫1dx)dx
=[logx.x]1e−1∫ex1xdx
=[eloge−1log(1)]−1∫e1dx
=e−[x]1e=e−[e−1]=1