Solveeit Logo

Question

Mathematics Question on integral

1e172πcos(πlogx)xdx=\int\limits_{1}^{e^{\frac{17}{2}}} \frac{\, \pi \cos (\pi \log x)}{x} dx =

A

0

B

-1

C

2

D

1

Answer

1

Explanation

Solution

Let I=1e172πcos(πlogx)xdxI = \int\limits_{1}^{e^{\frac{17}{2}}} \frac{\pi \cos (\pi \log x)}{x} dx
Putting π logx=zπxdx=dz \\\pi \ \log x = z \Rightarrow \frac{\pi}{x} dx = dz
Since, 1xe17/2 0z17π2 1 \leq x \leq e^{17 /2} \Rightarrow \ 0 \leq z \leq \frac{17 \pi}{2}
I=017π/2coszdx=[sinz]017π/2\Rightarrow I = \int_{0}^{17 \pi /2} \cos z dx = \left[\sin z \right]^{17 \pi /2}_{0}
     =sin17π2sin0\ \ \ \ \ = \sin \frac{17\pi}{2} -\sin 0
     =sin(8π+π2)=sinπ2=1\ \ \ \ \ =\sin \left(8 \pi +\frac{\pi}{2}\right)= \sin \frac{\pi}{2} =1