Solveeit Logo

Question

Mathematics Question on integral

13(2x)logxdx\int \limits_1^3|(2-x) \log x|dx is equal to

A

32log3+12\frac{3}{2} \log \, 3 + \frac{1}{2}

B

log163312\log \frac{16}{3 \sqrt{3}}- \frac{1}{2}

C

32log312-\frac{3}{2} \log 3 - \frac{1}{2}

D

none of these.

Answer

log163312\log \frac{16}{3 \sqrt{3}}- \frac{1}{2}

Explanation

Solution

13(2x)logxdx=122xlogxdx\int\limits_{1}^{3} \left|\left(2-x\right)log\,x\right|dx=\int\limits_{1}^{2}\left|2-x\right|\left|log\,x\right|dx +232xlogxdx+\int\limits_{2}^{3}\left|2-x\right|\left|log\,x\right|dx =12(2x)logxdx+23(x2)logxdx=\int\limits_{1}^{2}\left(2-x\right)log \, x\,dx+\int\limits_{2}^{3}\left(x-2\right)log\,x \, dx =logx(2xx22)12121x(2xx22)dx=\left|log\,x\left(2x-\frac{x^{2}}{2}\right)\right|_{1}^{2}-\int_{1}^{2} \frac{1}{x} \left(2x-\frac{x^{2}}{2}\right)dx +logx(x222x)23231x(x22x)dx+\left|log\,x\left(\frac{x^{2}}{2}-2x\right)\right|_{2}^{3}-\int_{2}^{3} \frac{1}{x}\left(x^{2}-2x\right)dx =4log232log312=4 log\, 2-\frac{3}{2} log 3 -\frac{1}{2} =log163312=log \frac{16}{3\sqrt{3}}-\frac{1}{2}