Solveeit Logo

Question

Mathematics Question on integral

1/21/2cosxlog(1+x1x)dx=\int\limits_{-1/2}^{1/2} \cos x\log\left(\frac{1+x}{1-x}\right) dx =

A

00

B

e\sqrt{e}

C

11

D

2e2 \sqrt{e}

Answer

00

Explanation

Solution

1212cosxlog(1+x1x)dx=\int\limits_{-1 2}^{1 2} \cos x\log\left(\frac{1+x}{1-x}\right) dx =
Let f(x)=cosxlog(1+x1x)=g(x)h(x)f(x) = \cos x \log\left(\frac{1+x}{1-x}\right) = g(x) h(x)
Here g(x)=cosxg(x) = \cos x and h(x)=log(1+x1x)g(x)h(x) = \log \left(\frac{1+x}{1-x}\right) g(x) is an even function.
Now, h(x)=log(1+x1x)=log(1+x1x)1h(-x) = \log \left(\frac{1+x}{1-x}\right) = \log \left(\frac{1+x}{1-x}\right)^{-1}
=log(1+x1x)=h(x)i.e.,h(x)= - \log \left(\frac{1+x}{1-x}\right) = - h(x) \: i.e. , h(x) is an odd function
f(x)\therefore \, \, \, f(x) is an odd function