Solveeit Logo

Question

Mathematics Question on integral

0ππf(sinx)dx\int\limits_{0}^{\pi}\pi f(\sin\,x)dx is equal to

A

π0π/2f(cosx)dx\pi \int\limits_{0}^{\pi/2} f(\cos\,x)dx

B

π0πf(cosx)dx\pi \int\limits_{0}^{\pi} f(\cos\,x)dx

C

π0πf(sinx)dx\pi\int\limits_{0}^{\pi} f(\sin\,x)dx

D

π20π/2f(sinx)dx\frac{\pi}{2}\int\limits_{0}^{\pi/2} f(\sin\,x)dx

Answer

π0π/2f(cosx)dx\pi \int\limits_{0}^{\pi/2} f(\cos\,x)dx

Explanation

Solution

Answer (a) π0π/2f(cosx)dx\pi \int\limits_{0}^{\pi/2} f(\cos\,x)dx