Solveeit Logo

Question

Mathematics Question on Fundamental Theorem of Calculus

0π/4log(1+tanx)dx\int\limits_{0}^{\pi /4} \log (1 + \tan \, x ) dx is equal to :

A

π8loge2\frac{\pi}{8} \log_{e} 2

B

π4log2e\frac{\pi}{4} \log_2 e

C

π4loge2\frac{\pi}{4} \log_e 2

D

π8loge(12)\frac{\pi}{8} \log_e \left( \frac{1}{2} \right)

Answer

π8loge2\frac{\pi}{8} \log_{e} 2

Explanation

Solution

Let I=0π/4log(1+tanx)dx...(1)I=\int\limits_{0}^{\pi / 4} \log (1+\tan x) d x...(1)
I=0π/4log[1+tan(π4x)]dx\Rightarrow I=\int\limits_{0}^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x
[0af(x)dx=0af(ax)dx]\left[\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]
=0π/4log[1+1tanx1+tanx]dx=\int\limits_{0}^{\pi / 4} \log \left[1+\frac{1-\tan x}{1+\tan x}\right] d x
=0π/4log[21+tanx]dx=\int\limits_{0}^{\pi / 4} \log \left[\frac{2}{1+\tan x}\right] d x
=0π/4log2dx0π/4log(1+tanx)dx=\int\limits_{0}^{\pi / 4} \log 2 dx -\int\limits_{0}^{\pi / 4} \log (1+\tan x ) d x
I=log2[x]0π/4I[\Rightarrow I =\log 2[ x ]_{0}^{\pi / 4}- I [ from E (i) ]]
2I=π4loge2\Rightarrow 2 I =\frac{\pi}{4} \log _{ e } 2
I=π8loge2\Rightarrow I =\frac{\pi}{8} \log _{ e } 2