Question
Mathematics Question on Fundamental Theorem of Calculus
0∫π/4log(1+tanx)dx is equal to :
A
8πloge2
B
4πlog2e
C
4πloge2
D
8πloge(21)
Answer
8πloge2
Explanation
Solution
Let I=0∫π/4log(1+tanx)dx...(1)
⇒I=0∫π/4log[1+tan(4π−x)]dx
[∵∫0af(x)dx=∫0af(a−x)dx]
=0∫π/4log[1+1+tanx1−tanx]dx
=0∫π/4log[1+tanx2]dx
=0∫π/4log2dx−0∫π/4log(1+tanx)dx
⇒I=log2[x]0π/4−I[ from E (i) ]
⇒2I=4πloge2
⇒I=8πloge2