Solveeit Logo

Question

Question: \(\int\limits_0^{\pi /4} {\dfrac{{\left( {\sin x + \cos x} \right)}}{{9 + 16\sin 2x}}dx} \)...

0π/4(sinx+cosx)9+16sin2xdx\int\limits_0^{\pi /4} {\dfrac{{\left( {\sin x + \cos x} \right)}}{{9 + 16\sin 2x}}dx}

Explanation

Solution

First of all we will assume sinxcosx=t\sin x - \cos x = t and differentiate it with respect to xx and from there we will get dxdx. Now for the sin2x\sin 2x , we will square the value of xx and substitute the value in the original equation and by using the form of integral we will solve it.

Formula used:
Integral form,
dxa2x2=12aloga+xax+c\int {\dfrac{{dx}}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c}
Log properties used are,
nlogm=logmnn\log m = \log {m^n}
log1=0\log 1 = 0
2sinxcosx=sin2x2\sin x\cos x = \sin 2x

Complete step by step solution:
We have the equation given as 0π/4(sinx+cosx)9+16sin2xdx\int\limits_0^{\pi /4} {\dfrac{{\left( {\sin x + \cos x} \right)}}{{9 + 16\sin 2x}}dx}
Let us assume that sinxcosx=t\sin x - \cos x = t
So now on differentiating the equation with respect to xx , we get
cosx+sinx=dtdx\Rightarrow \cos x + \sin x = \dfrac{{dt}}{{dx}}
And from here,
dx=dtsinx+cosx\Rightarrow dx = \dfrac{{dt}}{{\sin x + \cos x}}
Since, sinxcosx=t\sin x - \cos x = t
Now on squaring both the sides, we get
(sinxcosx)2=t2\Rightarrow {\left( {\sin x - \cos x} \right)^2} = {t^2}
On expanding the above equation, we get
sin2x+cos2x2sinxcosx=t2\Rightarrow {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x = {t^2}
And on solving the equation, we get
12sinxcosx=t2\Rightarrow 1 - 2\sin x\cos x = {t^2}
And by using the trigonometric formula, we get
1sin2x=t2\Rightarrow 1 - \sin 2x = {t^2}
And from here, 1t2=sin2x1 - {t^2} = \sin 2x
So we have the equation,
0π/4(sinx+cosx)9+16sin2xdx\Rightarrow \int\limits_0^{\pi /4} {\dfrac{{\left( {\sin x + \cos x} \right)}}{{9 + 16\sin 2x}}dx}
Now on putting the values of dxdx and sin2x\sin 2x , we get
10sinx+cosx9+16sin2x×dtsinx+cosx\Rightarrow \int\limits_{ - 1}^0 {\dfrac{{\sin x + \cos x}}{{9 + 16\sin 2x}} \times \dfrac{{dt}}{{\sin x + \cos x}}}
On canceling the like terms, we get
1019+16(1t2)dt\Rightarrow \int\limits_{ - 1}^0 {\dfrac{1}{{9 + 16\left( {1 - {t^2}} \right)}} \cdot dt}
So on solving the braces, we get
1019+1616t2dt\Rightarrow \int\limits_{ - 1}^0 {\dfrac{1}{{9 + 16 - 16{t^2}}} \cdot dt}
So the equation will be as
1012516t2dt\Rightarrow \int\limits_{ - 1}^0 {\dfrac{1}{{25 - 16{t^2}}} \cdot dt}
Now taking 116\dfrac{1}{{16}} common, we get
1161012516t2dt\Rightarrow \dfrac{1}{{16}}\int\limits_{ - 1}^0 {\dfrac{1}{{\dfrac{{25}}{{16}} - {t^2}}} \cdot dt}
So the above equation can be written as
116101(54)2t2dt\Rightarrow \dfrac{1}{{16}}\int\limits_{ - 1}^0 {\dfrac{1}{{{{\left( {\dfrac{5}{4}} \right)}^2} - {t^2}}} \cdot dt}
Since the above equation is of the form dxa2x2=12aloga+xax+c\int {\dfrac{{dx}}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c} , and also replacing the xx by tt and aa by 54\dfrac{5}{4} , we get
116[1254log54+t54t]10\Rightarrow \dfrac{1}{{16}}\left[ {\dfrac{1}{{2 \cdot \dfrac{5}{4}}}\log \left| {\dfrac{{\dfrac{5}{4} + t}}{{\dfrac{5}{4} - t}}} \right|} \right]_{ - 1}^0
And on solving it further, we get
14[110log5+4t54t]10\Rightarrow \dfrac{1}{4}\left[ {\dfrac{1}{{10}}\log \left| {\dfrac{{5 + 4t}}{{5 - 4t}}} \right|} \right]_{ - 1}^0
Taking the constant term outside, we get
140[log5+4t54t]10\Rightarrow \dfrac{1}{{40}}\left[ {\log \left| {\dfrac{{5 + 4t}}{{5 - 4t}}} \right|} \right]_{ - 1}^0
And on solving the equation further by substituting the values of the limit, we get
140[log5+4(0)54(0)log5+4(1)54(1)]\Rightarrow \dfrac{1}{{40}}\left[ {\log \left| {\dfrac{{5 + 4\left( 0 \right)}}{{5 - 4\left( 0 \right)}}} \right| - \log \left| {\dfrac{{5 + 4\left( { - 1} \right)}}{{5 - 4\left( { - 1} \right)}}} \right|} \right]
And on solving the multiplication, we get
140[log5+050log545+4]\Rightarrow \dfrac{1}{{40}}\left[ {\log \left| {\dfrac{{5 + 0}}{{5 - 0}}} \right| - \log \left| {\dfrac{{5 - 4}}{{5 + 4}}} \right|} \right]
And on solving the addition, we get
140[log55log19]\Rightarrow \dfrac{1}{{40}}\left[ {\log \dfrac{5}{5} - \log \dfrac{1}{9}} \right]
So by using the properties of logarithmic, it will be equal to
140[log1log(19)1]\Rightarrow \dfrac{1}{{40}}\left[ {\log 1 - \log {{\left( {\dfrac{1}{9}} \right)}^{ - 1}}} \right]
And on solving it, we get
140log9\Rightarrow \dfrac{1}{{40}}\log 9
**
Hence, the integral 0π/4(sinx+cosx)9+16sin2xdx\int\limits_0^{\pi /4} {\dfrac{{\left( {\sin x + \cos x} \right)}}{{9 + 16\sin 2x}}dx} will be equal to 140log9\dfrac{1}{{40}}\log 9.**

Note:
Here we can see that the calculation was very easy. We just need to know the properties we are going to use in it and solving step by step like this will keep you free from error and in this way you can easily solve such type of problem.