Solveeit Logo

Question

Mathematics Question on integral

0π/2cos2xdx(sinx+cosx)2 \int\limits_{0} ^{\pi/2}\frac{\cos\,2x\,dx}{(\sin\,x+\cos\,x)^2} is equal to

A

0

B

π4\frac{\pi}{4}

C

π2\frac{\pi}{2}

D

none of these.

Answer

0

Explanation

Solution

0π/2cos2x(sinx+cosx)2dx\int\limits_{0}^{\pi /2} \frac{cos\,2x}{\left(sin\,x+cos\,x\right)^{2}} dx =0π/2cos2xsin2x(sinx+cosx)2dx=\int\limits_{0}^{\pi /2} \frac{cos^{2}\,x-sin^{2}\,x}{\left(sin\,x+cos\,x\right)^{2}}dx =0π/2cosxsinxcosx+sinxdx=log(cosx+sinx)0π/2=\int\limits_{0}^{\pi/ 2}\frac{cos\,x-sin\,x}{cos\,x+sin\,x}dx=\left|log \left(cos\,x+sin\,x\right)\right|_{0}^{\pi/ 2} =log1log1=0=log\,1-log\,1=0