Solveeit Logo

Question

Question: \(\int\limits_0^{\dfrac{\pi }{8}} {{{\cos }^3}4\theta } d\theta \) is equal to (A) \(\dfrac{5}{3}\...

0π8cos34θdθ\int\limits_0^{\dfrac{\pi }{8}} {{{\cos }^3}4\theta } d\theta is equal to
(A) 53\dfrac{5}{3}
(B) 54\dfrac{5}{4}
(C) 13\dfrac{1}{3}
(D) 16\dfrac{1}{6}

Explanation

Solution

Hint: Here we have to solve the integral by substituting appropriately and then change the limits as per the variable.

Complete step-by-step answer:
Let I=0π8cos34θdθI = \int\limits_0^{\dfrac{\pi }{8}} {{{\cos }^3}4\theta } d\theta
So this can be written as,
I=0π8cos24θcos4θdθ\Rightarrow I = \int\limits_0^{\dfrac{\pi }{8}} {{{\cos }^2}4\theta \cdot } \cos 4\theta d\theta
Now you know that cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta
I=0π8(1sin24θ)cos4θdθ\Rightarrow I = \int\limits_0^{\dfrac{\pi }{8}} {\left( {1 - {{\sin }^2}4\theta } \right)} \cdot \cos 4\theta d\theta
Now let sin4θ=t\sin 4\theta = t \to (1)
Limits:
Lower limit; when θ=0t=sin(0)=0\theta = 0 \Rightarrow t = \sin(0) = 0
Upper limit; when θ=π8t=sinπ2=1\theta = \dfrac{\pi }{8} \Rightarrow t = \sin \dfrac{\pi }{2} = 1

Now differentiate equation (1) w.r.t θ\theta
4cos4θdθ=dt4\cos 4\theta d\theta = dt
Substituting these, we get,
I=01(1t2)dt4\Rightarrow I = \int\limits_0^1 {\left( {1 - {t^2}} \right) \cdot \dfrac{{dt}}{4}}
Apply the integration
I=14[tt33]01\Rightarrow I = \dfrac{1}{4}\left[ {t - \dfrac{{{t^3}}}{3}} \right]_0^1
Apply the integration limits
I=14[11330+0]01\Rightarrow I = \dfrac{1}{4}\left[ {1 - \dfrac{{{1^3}}}{3} - 0 + 0} \right]_0^1
I=14×23=16\Rightarrow I = \dfrac{1}{4} \times \dfrac{2}{3} = \dfrac{1}{6}
So option (D) is the correct answer.

Note: In these types of problems, when a part of an existing integrad is equated to another variable, the limits also change accordingly but one usually forgets that part and substitutes the original limits which will lead to a wrong answer most of the time.