Question
Mathematics Question on Integrals of Some Particular Functions
0∫1xe−5xdx is equal to
A
251−256e−5
B
251+256e−5
C
−251−256e−5
D
251−51e−5
Answer
251−256e−5
Explanation
Solution
∫01IxIIe−5xdx
=\left[\left\\{x\left(\frac{e^{-5 x}}{-5}\right)\right\\}\right]_{0}^{1}-\left\\{\int_{0}^{1} 1 \cdot \frac{e^{-5 x}}{-5} d x\right\\}
=[−5xe−5x−25e−5x]01
=−5e−5−25e−5+251
=−256e−5+251=251−256e−5