Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

01xe5xdx\int\limits_{0}^{1} x e^{-5x} \, dx is equal to

A

1256e525\frac{1}{25}-\frac{6e^{-5}}{25}

B

125+6e525\frac{1}{25}+\frac{6e^{-5}}{25}

C

1256e525-\frac{1}{25}-\frac{6e^{-5}}{25}

D

12515e5\frac{1}{25}-\frac{1}{5}e^{-5}

Answer

1256e525\frac{1}{25}-\frac{6e^{-5}}{25}

Explanation

Solution

01xIe5xIIdx\int_{0}^{1} \,\underset{I}{x}\, \underset{II}{e^{-5x}}\,dx
=\left[\left\\{x\left(\frac{e^{-5 x}}{-5}\right)\right\\}\right]_{0}^{1}-\left\\{\int_{0}^{1} 1 \cdot \frac{e^{-5 x}}{-5} d x\right\\}
=[xe5x5e5x25]01=\left[-\frac{x e^{-5 x}}{5}-\frac{e^{-5 x}}{25}\right]_{0}^{1}
=e55e525+125=-\frac{e^{-5}}{5}-\frac{e^{-5}}{25}+\frac{1}{25}
=6e525+125=1256e525=-\frac{6 e^{-5}}{25}+\frac{1}{25}=\frac{1}{25}-\frac{6 e^{-5}}{25}