Solveeit Logo

Question

Mathematics Question on integral

01dx[ax+b(1x)]2 \int\limits_{0} ^{1}\frac{dx}{[ax+b(1-x)]^2} is equal to

A

ab

B

ab\frac{a}{b}

C

ba\frac{b}{a}

D

1ab\frac{1}{ab}

Answer

ab\frac{a}{b}

Explanation

Solution

01dx[ax+b(1x)]2=01[b+(ab)x]2dx\int\limits_{0}^{1} \frac{dx}{\left[ax+b\left(1-x\right)\right]^{2}}= \int\limits_{0}^{^1}\left[b+\left(a-b\right)x\right]^{-2} dx =b+(ab)x1(ab)01=\left|\frac{b+\left(a-b\right)x^{-1}}{-\left(a-b\right)}\right|_{0}^{1} =1ab([b+(ab)]1[b]1])=-\frac{1}{a-b} \left([b+\left(a-b\right)\right]^{-1}-\left[b\right]^{-1}]) =1ab[1a1b]=-\frac{1}{a-b}\left[\frac{1}{a}-\frac{1}{b}\right] =1abbaab=1ab=-\frac{1}{a-b}\cdot \frac{b-a}{ab}=\frac{1}{ab}