Solveeit Logo

Question

Mathematics Question on integral

018log(1+x)1+x2dx\int\limits _{0}^{1} \frac {8 \log (1+x)}{1+x^2}dx is equal to

A

πlog2\pi log 2

B

π8log2\frac {\pi} {8} log 2

C

π2log2\frac {\pi} {2} log 2

D

log 2.

Answer

πlog2\pi log 2

Explanation

Solution

Let I=0181+x2log(1+x)dx I=\int\limits_{0}^{1} \frac{8}{1+x^{2}} log \left(1 + x \right)dx. Put x=tanθx = tan \, \theta I=80π/4log(1+tanθ)sec2θ1+tan2θ\therefore I=8 \int\limits_{0}^{\pi /4} \frac{log\left(1+tan\,\theta\right)sec^{2}\,\theta}{1+tan^{2}\,\theta} =80π/4log(1+tanθ)dθ=8 \int\limits_{0}^{\pi /4}log\left(1+tan\,\theta\right)d\theta Also , I=8π/4π/4log[1+tan(π4θ)]dθI=8 \int\limits_{\pi /4}^{\pi /4} log \left[1+tan\left(\frac{\pi}{4}-\theta\right)\right]d \theta =80π/4log(1+1tanθ1+tanθ)dθ=8 \int\limits_{0}^{\pi /4} log\left(1+\frac{1-tan\,\theta}{1+tan\,\theta}\right)d \theta =80π/4log(21+tanθ)dx=8 \int\limits_{0}^{\pi/ 4} log\left(\frac{2}{1+tan\,\theta}\right)dx =8[log20π/4dθ]2I=8\left[log\,2 \int\limits_{0}^{\pi /4} d\theta\right] \Rightarrow2I =log2(π4)8=log\,2\cdot\left(\frac{\pi}{4}\right)8 I=πlog2=2πlog2\Rightarrow I=\pi \, log\,2=2\pi\, log\,2