Question
Mathematics Question on integral
0∫11+x28log(1+x)dx is equal to
A
πlog2
B
8πlog2
C
2πlog2
D
log 2.
Answer
πlog2
Explanation
Solution
Let I=0∫11+x28log(1+x)dx. Put x=tanθ ∴I=80∫π/41+tan2θlog(1+tanθ)sec2θ =80∫π/4log(1+tanθ)dθ Also , I=8π/4∫π/4log[1+tan(4π−θ)]dθ =80∫π/4log(1+1+tanθ1−tanθ)dθ =80∫π/4log(1+tanθ2)dx =8[log20∫π/4dθ]⇒2I =log2⋅(4π)8 ⇒I=πlog2=2πlog2