Question
Mathematics Question on integral
∫[sin(logx)+cos(logx)]dx is equal to
A
xcos(logx)+c
B
cos(logx)+c
C
xsin(logx)+c
D
sin(logx)+c
Answer
xsin(logx)+c
Explanation
Solution
∫[sin(logx)+cos(logx)]dx =∫dxdxsin(logx)dx =xsin(logx)+c
∫[sin(logx)+cos(logx)]dx is equal to
xcos(logx)+c
cos(logx)+c
xsin(logx)+c
sin(logx)+c
xsin(logx)+c
∫[sin(logx)+cos(logx)]dx =∫dxdxsin(logx)dx =xsin(logx)+c