Question
Mathematics Question on Integrals of Some Particular Functions
∫(secx)log(secx−tanx)dx=
A
\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C
B
-\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C
C
-\frac{3}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C
D
-\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{-2}+C
Answer
-\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C
Explanation
Solution
Let I=∫secx⋅log(secx−tanx)dx
Put log(secx−tanx)=t
⇒secx−tanx1×(secxtanx−sec2x)dx=dt
⇒−secxdx=dt
∴I=−∫tdt=2−t2+C
=2−1[log(secx−tanx)]2+C