Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

(secx)log(secxtanx)dx=\int\left(sec\,x\right)log \left(sec\,x-tan\,x\right)dx=

A

\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C

B

-\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C

C

-\frac{3}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C

D

-\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{-2}+C

Answer

-\frac{1}{2}\left\\{log\left(sec\,x-tan\,x\right)\right\\}^{2}+C

Explanation

Solution

Let I=secxlog(secxtanx)dxI = \int sec\,x \cdot log(sec\,x - tan\, x)dx
Put log(secxtanx)=tlog(sec\,x - tan\,x) = t
1secxtanx×(secxtanxsec2x)dx=dt\Rightarrow \frac{1}{sec\,x - tan\,x}\times (sec\,x \,tan\,x - sec^2\,x)dx = dt
secxdx=dt\Rightarrow - sec\,x\,dx = dt
I=tdt=t22+C\therefore I = -\int t \,dt = \frac{-t^2}{2} + C
=12[log(secxtanx)]2+C= \frac{-1}{2}[log(sec\,x - tan\,x)]^2 + C